3D MCSEM Modeling with COMSOL Multiphysics: A Comparison with Open- Source Software

Leandro Seabra, Victor Cezar Tocantins, Watson Penha, Higor Pires, Daniel Monteiro, Antonio Monteiro

Abstract


This work uses two approaches to present the numerical three-dimensional modeling of the MCSEM - Marine Controlled-Source Electromagnetic methods: the commercial software COMSOL Multiphysics and the open-source code emged for a theoretical model of resistive blocks. We first compare the results of the two methodologies through the electric field amplitude’s responses for three survey lines. We also analyze the necessary circumstances and boundary conditions for COMSOL Multiphysics to be used properly in the modeling. After this comparison, we explore the facilities of the model built into COMSOL Multiphysics and simulate the model for various frequencies with and without the presence of resistive bodies. Finally, we analyze the results and suggest lines of research for the construction of the simulations to be explored in numerical modeling in these two approaches. Thus, we ratify both approaches in their suitable domain, use, and importance through this work.


Keywords


electromagnetic; controlled-source; finite elements; Python

Full Text:

PDF

References


Anaconda Software Distribution, 2021, Computer software, vers. 2021.11. (https://anaconda.com).

Butler, S. L., and Z. Zhang, 2016, Forward modeling of geophysical electromagnetic methods using comsol: Computers & Geosciences, 87, 1–10, doi: https://doi.org/10.1016/j.cageo.2015.11.004.

Castillo-Reyes, O., J. de la Puente, and J. M. Cela, 2018, Petgem: A parallel code for 3d csem forward modeling using edge finite elements: Computers & Geosciences, 119, 123–136, doi:

https://doi.org/10.1016/j.cageo.2018.07.005.

Castillo-Reyes, O., J. de la Puente, L. E. García-Castillo, and J. M. Cela, 2019, Parallel 3-D marine controlled- source electromagnetic modelling using high-order tetrahedral Nédélec elements: Geophysical Journal Inter- national, 219, 39–65, doi: 10.1093/gji/ggz285.

Chave, A. D., S. C. Constable, and R. N. Edwards, 1991, Electrical exploration methods for the seafloor, in Electromagnetic Methods in Applied Geophysics: Volume 2, Application, Parts A and B: Society of Exploration Geophysicists, 931–966. doi: 10.1190/1.9781560802686.ch12.

Chave, A. D., and C. S. Cox, 1982, Controlled electromagnetic sources for measuring electrical conductivity beneath the oceans: 1. forward problem and model study: Journal of Geophysical Research: Solid Earth, 87, 5327–5338, doi: https://doi.org/10.1029/JB087iB07p05327.

Chave, A. D., and C. S. Cox, 1983, Electromagnetic induction by ocean currents and the conductivity of the oceanic lithosphere: Journal of Geomagnetism and Geoelectricity, 35, 491–499, doi: 10.5636/jgg.35.491.

Cockett, R., S. Kang, L. J. Heagy, A. Pidlisecky, and D. W. Oldenburg, 2015, SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications: Computers & Geosciences, 85, 142–154, doi: https://doi.org/10.1016/j.cageo.2015.09.015.

Constable, S., 1990, Marine electromagnetic induction studies: Surveys in Geophysics, 11, 303–327, doi: 10.1007/BF01901663.

Edwards, N., 2005, Marine controlled source electromagnetics: principles, methodologies, future commercial applications: Surveys in Geophysics, 26, 675–700, doi: 10.1007/s10712-005-1830-3.

Eidesmo, T., S. Ellingsrud, L. MacGregor, S. Constable, M. Sinha, S. Johansen, F. Kong, and H. Westerdahl, 2002, Sea Bed Logging (SBL), a new method for remote and direct identification of hydrocarbon filled layers in deepwater areas: First Break, 20, doi: https://doi.org/10.3997/1365-2397.20.3.25008.

Ellingsrud, S., T. Eidesmo, S. Johansen, M. Sinha, L. MacGregor, and S. Constable, 2002, Remote sensing of hydrocarbon layers by Seabed Logging (SBL): Results from a cruise offshore Angola: The Leading Edge, 21, 972–982, doi: 10.1190/1.1518433.

EMGS, 2022, Controlled Source Electromagnetics (CSEM). (https://emgs.com/technology/a-guide-to-marine- em/csem/).

Fedorenko, R., 1964, The speed of convergence of one iterative process: USSR Computational Mathematics and Mathematical Physics, 4, 227–235, doi: https://doi.org/10.1016/0041-5553(64)90253-8.

Harris, C. R., K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, 2020, Array programming with NumPy: Nature, 585, 357–362, doi:

Braz. J. Geophys.19 https://doi.org/10.1038/s41586-020-2649-2.

Heagy, L. J., R. Cockett, S. Kang, G. K. Rosenkjaer, and D. W. Oldenburg, 2017, A frame- work for simulation and inversion in electromagnetics: Computers & Geosciences, 107, 1–19, doi: https://doi.org/10.1016/j.cageo.2017.06.018.

Huray, P. G., 2009, The foundations of signal integrity: John Wiley & Sons, Inc.

Johnson, S. G., 2021, Notes on perfectly matched layers (PMLs): CoRR, abs/2108.05348, doi: 10.48550/ARXIV.2108.05348.

Lam, S. K., A. Pitrou, and S. Seibert, 2015, Numba: A LLVM-Based Python JIT Compiler, in Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, Austin Texas: Association for Computing Machinery, LLVM’15. doi: 10.1145/2833157.2833162.

Leite, M. L., and V. C. Tocantins, 2015, Modelagem tridimensional do método MCSEM usando COMSOL Multiphysics, in 14th International Congress of the Brazilian Geophysical Society; EXPOGEF, Rio de Janeiro, Brazil, 3-6 August 2015: Society of Exploration Geophysicists, 197–199. doi: 10.1190/sbgf2015-039.

Li, A., and S. Butler, 2021, Forward modeling of magnetotellurics using COMSOL Multiphysics: Applied Computing and Geosciences, 12, 100073, doi: https://doi.org/10.1016/j.acags.2021.100073.

Li, Q., K. Ito, Z. Wu, C. S. Lowry, and S. P. Loheide II, 2009, COMSOL Multiphysics: A novel approach to ground water modeling: Groundwater, 47, 480–487, doi: https://doi.org/10.1111/j.1745-6584.2009.00584.x.

Miensopust, M. P., P. Queralt, A. G. Jones, and the 3D MT modellers, 2013, Magnetotelluric 3-D inversion—a review of two successful workshops on forward and inversion code testing and comparison: Geophysical Journal International, 193, 1216–1238, doi: 10.1093/gji/ggt066.

Miranda, H. D. T., and V. C. Tocantins, 2017, 2.5 marine csem modeling using COMSOL Multiphysics, in 15th International Congress of the Brazilian Geophysical Society; EXPOGEF, Rio de Janeiro, Brazil, 31 July-3 August 2017: Society of Exploration Geophysicists, 211–216. doi: 10.1190/sbgf2017-042.

Mulder, W., 2006, A multigrid solver for 3D electromagnetic diffusion: Geophysical Prospecting, 54, no. 5, 633–649, doi: 10.1111/j.1365-2478.2006.00558.x.

Pryor, R., 2022, Multiphysics Modeling Using COMSOL 5 and MATLAB, 2 ed.: Mercury Learning and Infor- mation.

Rochlitz, R., N. Skibbe, and T. Günther, 2019, custEM: Customizable finite-element simulation of complex controlled-source electromagnetic data: Geophysica, 84, F17–F33, doi: 10.1190/geo2018-0208.1.

Régis, C., and W. Santos, 2017, Delineation of anisotropic layers through 1D inversion of marine CSEM data: Brazilian Journal of Geophysics, 34, 543–558, doi: 10.22564/rbgf.v34i4.870.

Virtanen, P., R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, ?. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, A. Vijaykumar, A. P. Bardelli, A. Rothberg, A. Hilboll, A. Kloeckner, A. Scopatz, A. Lee, A. Rokem, C. N. Woods, C. Fulton, C. Masson, C. Häggström, C. Fitzgerald, D. A. Nicholson, D. R. Hagen, D. V. Pasechnik, E. Olivetti, E. Martin, E. Wieser, F. Silva, F. Lenders, F. Wilhelm, G. Young, G. A. Price, G.-L. Ingold, G. E. Allen, G. R. Lee, H. Audren, I. Probst, J. P. Dietrich, J. Silterra, J. T. Webber, J. Slavi?, J. Nothman, J. Buchner, J. Kulick, J. L. Schönberger, J. V. de Miranda Cardoso, J. Reimer, J. Harrington, J. L. C. Rodríguez, J. Nunez-Iglesias, J. Kuczynski, K. Tritz, M. Thoma, M. Newville, M. Kümmerer, M. Bolingbroke, M. Tartre, M. Pak, N. J. Smith, N. Nowaczyk, N. Shebanov, P. A. Pavlyk, Oleksandrv Brodtkorb, P. Lee, R. T. McGibbon, R. Feldbauer, S. Lewis, S. Tygier, S. Sievert, S. Vigna, S. Peterson, S. More, T. Pudlik, T. Oshima, T. J. Pingel, T. P. Robitaille, T. Spura, T. R. Jones, T. Cera, T. Leslie, T. Zito, T. Krauss, U. Upadhyay, Y. O. Halchenko, Y. Vázquez-Baeza, and SciPy 1.0 Contributors, 2020, SciPy 1.0: fundamental algorithms for scientific computing in Python: Nature Methods, 17, 261–272, doi: https://doi.org/10.1038/s41592-019-0686-2.

Weiland, T., 1977, Eine Methode zur Lösung der Maxwellschen Gleichungen für sechskomponentige Felder auf diskreter Basis: International Journal of Electronics and Communications, 31, 116–120.

Werthmüller, D., W. A. Mulder, and E. C. Slob, 2019, EMG3D: A multigrid solver for 3D electromagnetic diffusion: Journal of Open Source Software, 4, 1463, doi: 10.21105/joss.01463.

Werthmüller, D., R. Rochlitz, O. Castillo-Reyes, and L. Heagy, 2021, Towards an open-source landscape for 3-D CSEM modelling: Geophysical Journal International, 227, 644–659, doi: 10.1093/gji/ggab238.




DOI: http://dx.doi.org/10.22564/brjg.v41i1.2287

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.





 

>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)

 

Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br

Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.

Creative Commons