Quantifying anisotropy parameters in weakly anisotropic media through diffraction traveltime parameter clusters

Tiago Antonio Alves Coimbra, Rodrigo Bloot, Alexandre William Camargo, Jorge Henrique Faccipieri Junior

Abstract


The seismic response datasets obtained from anisotropic media present several challenges for established seismic processing methods. To determine whether wavefront interference stems from anisotropic effects, velocity model heterogeneity, or both remains a key challenge. While reflection signatures may be insufficient for distinguishing these attributes, diffraction information in seismic datasets often provides richer insights into subsurface structures. In response to these challenges, we propose a framework that explores the feasibility of using diffraction traveltime parameters as indicators of anisotropy. By introducing an average measurement velocity derived from a cluster of diffraction traveltime responses, defined as a function of the traveltime slopes estimated from the dataset, we aim to discern the prevalence of anisotropy, heterogeneity, or both within a target region. Experiments conducted with synthetic data designed to simulate realistic scenarios have yielded promising results.

Keywords


diffraction velocity; anisotropy detection; heterogeneity; cluster of diffractions; seismic processing

Full Text:

PDF

References


Alkhalifah, T., 1997, Velocity analysis using nonhyperbolic moveout in transversely isotropic media: Geophysics,

, 1839–1854, doi: 10.1190/1.1444285.

Alkhalifah, T., and I. Tsvankin, 1995, Velocity analysis for transversely isotropic media: Geophysics, 60, 1550–1566, doi: 10.1190/1.1443888.

Billette, F., and S. Brandsberg-Dahl, 2005, The 2004 BP velocity benchmark: Presented at the 67th EAGE Conference & Exhibition, European Association of Geoscientists & Engineers, Madrid, Spain. doi: 10.3997/2214-4609-pdb.1.b035.

Bloot, R., T. A. Coimbra, J. H. Faccipieri, and M. Tygel, 2018, Common-reflection-surface method in weakly anisotropic vertical transverse isotropic media: Geophysics, 83, C99–C113, doi: 10.1190/geo2017-0368.1.

Bloot, R., J. Schleicher, and L. T. Santos, 2013, On the elastic wave equation in weakly anisotropic VTI media: Geophysical Journal International, 192, 1144–1155, doi: 10.1093/gji/ggs066.

Cameron, M. K., S. B. Fomel, and J. A. Sethian, 2007, Seismic velocity estimation from time migration: Inverse Problems, 23, 1329–1369, doi: 10.1088/0266-5611/23/4/001.

?ervený, V., 2001, Seismic ray theory: Cambridge University Press, 722 pp, doi: 10.1017/cbo9780511529399.

Coimbra, T. A., R. Bloot, and J. H. Faccipieri, 2023, Exploring velocity-spreading factor and consequences through dynamic ray-tracing in general anisotropic media: A comprehensive tutorial: arXiv:2304.02069v1 [physics.geo-ph], doi: 10.48550/arXiv.2304.02069.

Coimbra, T. A., J. H. Faccipieri, J. H. Speglich, L.-J. Gelius, and M. Tygel, 2019, Enhancement of diffractions in prestack domain by means of a finite-offset double-square-root traveltime: Geophysics, 84, V81–V96, doi: 10.1190/geo2018-0160.1.

Coimbra, T. A., A. Novais, and J. Schleicher, 2016, Offset-continuation stacking: Theory and proof of concept: Geophysics, 81, V387–V401, doi: 10.1190/geo2015-0473.1.

Dell, S., A. Pronevich, B. Kashtan, and D. Gajewski, 2013, Diffraction traveltime approximation for general anisotropic media: Geophysics, 78, WC15–WC23, doi: 10.1190/geo2012-0346.1.

Dix, C. H., 1955, Seismic velocities from surface measurements: Geophysics, 20, 68–86, doi: 10.1190/1.1438126.

Faccipieri, J. H., T. A. Coimbra, L. J. Gelius, and M. Tygel, 2016, Stacking apertures and estimation strategies for reflection and diffraction enhancement: Geophysics, 81, V271–V282, doi: 10.1190/GEO2015-0525.1.

Gelius, L.-J., and M. Tygel, 2015, Migration-velocity building in time and depth from 3D (2D) Common- Reflection-Surface (CRS) stacking - theoretical framework: Studia Geophysica et Geodaetica, 59, 253–282, doi: 10.1007/s11200-014-1036-6.

Grechka, V., and I. Tsvankin, 1998, Feasibility of nonhyperbolic moveout inversion in transversely isotropic media: Geophysics, 63, 957–969, doi: 10.1190/1.1444407.

Grechka, V. Y., and G. A. McMechan, 1996, 3-D two-point ray tracing for heterogeneous, weakly transversely isotropic media: Geophysics, 61, 1883–1894, doi: 10.1190/1.1444103.

Hubral, P., 1983, Computing true amplitude reflections in a laterally inhomogeneous earth: Geophysics, 48, 1051–1062, doi: 10.1190/1.1441528.

Hubral, P., and T. Krey, 1980, Interval velocities from seismic reflection time measurements: Society of Exploration Geophysicists, Tulsa, Oklahoma, 214 pp, doi: 10.1190/1.9781560802501.

Landa, E., and S. Keydar, 1998, Seismic monitoring of diffraction images for detection of local heterogeneities: Geophysics, 63, 1093–1100, doi: 10.1190/1.1444387.

Mundim, E. C., C. Benedicto, J. H. Faccipieri Jr., D. R. Serrano, M. Tygel, and T. A. A. Coimbra, 2024, Method for separating information associated with diffraction events from specular information present in the seismic data: U.S. Patent App. 18/365,795. (US 2024/0045090 A1).

Ribeiro, J., N. Okita, T. A. Coimbra, and J. H. Faccipieri, 2023, Ultra-fast traveltime parameters search by a coevolutionary optimization approach using graphics processing units: arXiv:2304.11399v1 [physics.geo-ph], doi: 10.48550/arXiv.2304.11399.

Sadri, M., and M. A. Riahi, 2010, Ray tracing and amplitude calculation in anisotropic layered media: Geo- physical Journal International, 180, 1170–1180, doi: 10.1111/j.1365-246x.2009.04464.x.

Storn, R., and K. Price, 1997, Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces: Journal of Global Optimization, 11, 341–359, doi: 10.1023/a:1008202821328.

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954–1966, doi: 10.1190/1.1442051.

Tsvankin, I., 2012, Seismic signatures and analysis of reflection data in anisotropic media, Third edition: Society of Exploration Geophysicists, Tulsa, Oklahoma, 459 pp, doi: 10.1190/1.9781560803003.

Virieux, J., 1986, P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method: Geophysics, 51, 889–901, doi: 10.1190/1.1442147.

Waheed, U. bin, T. Alkhalifah, and A. Stovas, 2013, Diffraction traveltime approximation for TI media with an inhomogeneous background: Geophysics, 78, WC103–WC111, doi: 10.1190/geo2012-0413.1.

Waheed, U. bin, A. Stovas, and T. Alkhalifah, 2017, Anisotropy parameter inversion in vertical axis of symmetry media using diffractions: Geophysical Prospecting, 65, 194–203, doi: 10.1111/1365-2478.12417.

Yilmaz, O., 2001, Seismic data analysis: Processing, inversion, and interpretation of seismic data: Society of Exploration Geophysicists, Tulsa, Oklahoma, 2065 pp, doi: 10.1190/1.9781560801580.




DOI: http://dx.doi.org/10.22564/brjg.v42i1.2309

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.





 

>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)

 

Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br

Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.

Creative Commons