Open-System Magmatic Evolution of The Morro de São João Alkaline Complex, SE Brazil: Insights from Magnetometric Signatures Combined to Petrographic Analysis

Mariana Bessa Fagundes, André Luis Albuquerque dos Reis, Anderson Costa dos Santos, Mauro Cesar Geraldes, Sérgio de Castro Valente, Jailane de Sousa Gomes

Abstract


The present study integrates the magnetometric with petrographic data from the Morro de São João (MSJ) Alkaline Complex to investigate the magmatic evolution of the complex. The findings emphasize the critical role of magma mixing processes in shaping the textural and compositional diversity of MSJ rocks. The complex is a circular and conical body of approximately 10 km² located southeast of Rio de Janeiro composed of alkaline rocks strongly-silica undersaturation. The study used conventional petrographic analysis and aeromagnetic data processing, such as the Total Gradient Amplitude (TGA) and Reduction to the pole (RTP) maps to reveal the presence of multiple anomalous domains, supporting the hypothesis of non-cogenetic magmatic bodies that interacted during magma mixing events. To accomplish these objectives, this study employs a cross-correlation method to estimate the magnetization direction of the magnetic source. From a geodynamic perspective, the evolution of the MSJ’s evolution is supposed to be closely linked to geomagnetic polarity reversals, mantle plume activity, and extensional tectonic processes associated with the break-up of the Gondwana paleocontinent. These factors contributed to the generation of alkaline magmatism through the decompression of the subcontinental lithospheric mantle and the thermal influence of deep mantle plumes.

Keywords


igneous petrology; magmatic system; poikilitic texture; cross-correlation method; magnetization direction of magnetic sources

Full Text:

PDF (Draft)

References


Almeida, F.F.M., 1983, Relações tectônicas das rochas alcalinas mesozoicas da região meridional da Plataforma Sulamericana. Revista Brasileira de Geociências, 13 (3):139- 158.

Almeida, F. F. M., 1967, Origem e evolução da Plataforma Brasileira. Boletim 241, Rio de Janeiro, Brazil: DNPM-Divisão de Geologia e Mineralogia, p. 36.

Almeida, F. F. M., 1991, O alinhamento magmático de Cabo Frio. 2o Simpósio de Geologia do Sudeste, São Paulo, Brazil, Atas, p. 423–428.

Almeida, J. C. H., Heilbron, M., Schmitt, R., Valeriano, C. M., Rubim, I. N., Mohriak, W. U., Júnior, D. L. M., Tetzner, W., 2013, Guia de campo na área continental do Alto de Cabo Frio. Boletim de Geociências. Petrobras, 21, 325-355.

Alves, A., Janasi, V. de A., Neto, M. C. C., 2016, Sources of granite magmatism in the Embu Terrane (Ribeira Belt, Brazil): Neoproterozoic crust recycling constrained by elemental and isotope (Sr-Nd-Pb) geochemistry. Journal of South American Earth Sciences, v. 68, p. 205–223. https://doi.org/10.1016/j.jsames.2015.10.014

Azzone, R.G., Muñoz, P.M., Enrich, G.E.R., Alves, A., Ruberti, E., Gomes C.B. 2016. Petrographic, geochemical and isotopic evidence of crustal assimilation processes in the Ponte Nova alkaline mafic–ultramafic massif, SE Brazil. Lithos, 260:58-75. https://doi.org/10.1016/j.lithos.2016.05.004

Baranov, V., 1957, A new method for interpretation of aeromagnetic maps pseudo-gravimetric anomalies: Geophysics, 22, 359–383. https://doi.org/10.1190/1.1438369

Barros, T. M. J., Brito, P. C., Corval, A., Valente, S. C., Miranda, A, W, A., 2023, The post-breakup magmatism in Cabo Frio High, Campos Basin, Brazil: implications to a thinned lithosphere contribution in magma formation. Comunicações Geológicas. 110, 1, 39 - 60. https://doi.org/10.34637/h145-3n13

Bilim, F., Ates, A., 2004, An enhanced method for estimation of body magnetization direction from pseudogravity and gravity data: Computers & Geosciences, 30, 161–171. https://doi.org/10.1016/j.cageo.2003.09.003

Blakely, R. J., 1996, Potential theory in gravity and magnetic applications. Cambridge: Cambridge University Press, 464 pp.

Brotzu, P., Melluso, L., Bennio, L., Gomes, C. B., Lustrino, M., Morbidelli, L., Morra, V., Ruberti, E., Tassinari, C., D’Antonio, M., 2007, Petrogenesis of the Early Cenozoic potassic alkaline complex of Morro de São João, southeastern Brazil. Journal of South American Earth Sciences, v. 24, n. 1, p. 93–115. https://doi.org/10.1016/j.jsames.2007.02.006

Carvalho, M, O., Mottramd, C. M., Valeriano, C. M., Ramos, R. C., Parrish, R., Dunlop, J., Cota, N., Paravidini, G., Neto, C. C. A., Heilbron, M., Storey, C., 2023, Sedimentary provenance in continental rifts: U–Pb detrital zircon, Nd and Sr isotopes and lithogeochemistry of the Eocene alluvial sandstones of the Resende Basin, SE–Brazil. Sedimentary Geology 453, 106452. https://doi.org/10.1016/j.sedgeo.2023.106452

Chmyz, L., Arnaud, N., Biondi, J.C., Azzone, R.G., Bosch, D., Ruberti, E., 2017, Ar-Ar ages, Sr-Nd isotope geochemistry, and implications for the origin of the silicate rocks of the Jacupiranga ultramafic-alkaline complex (Brazil). J. South Am. Earth Sci., 77:286-309. https://doi.org/10.1016/j.jsames.2017.05.009

Clark, D. A., 2014, Methods for determining remanent and total magnetisations of magnetic sources - A review. Exploration Geophysics, 45(4), 271–304. https://doi.org/10.1071/eg14013

Condie, K. C., 1997, Plate Tectonics and Crustal Evolution. 4 ed. Oxford-UK: Butterworth-Heinemann, 282 p. https://doi.org/10.1016/B978-0-7506-3386-4.X5000-9.

CPRM, 2012, Projeto Aerogeofísico Rio de Janeiro. Relatório Final do Levantamento e processamento dos dados magnetométricos e gamaespectrométricos. Prospector Aerolevantamentos e Sistemas Ltda. Volume I. Programa Geologia do Brasil PGB.

Dannemiller, N., Li, Y., 2006, A new method for determination of magnetization direction. Geophysics, 71(6), L69–L73. https://doi.org/10.1190/1.2356116

Davidson, J.P., Morgan, D.J., Charlier, B.L.A., Harlou, R., Hora, J.M., 2007, Microsampling and isotopic analysis of igneous rocks: implications for the study of magmatic systems: Annual Review of Earth and Planetary Sciences, v. 35, p. 273-311. https://doi.org/10.1146/annurev.earth.35.031306.140211

Dobretsov, N., Metelkin, D., Vasilevskiy, A., 2021, Typical Characteristics of the Earth’s Magnetic and Gravity Fields Related to Global and Regional Tectonics. Russian Geology and Geophysics, 62, 6-24. https://doi.org/10.2113/RGG20204261

Dunlop, D.J., Özdemir, Ö., 1997, Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, 573 pp. https://doi.org/10.1017/CBO9780511612794

Dutra, A. C. D., Guimarães, S. N. P., Salomão, M. S., Palermo, N., Bertolino, L. C., Bruno, H., Mane, M. A., 2022, Use of Airborne Geophysics for Potential Fe-Ti-V Oxides Mineralization in Metagabbros: An Example within the Paleoproterozoic Basement of Ribeira Belt, Southeast Brazil. Brazilian Journal of Geophysics. v. 40, 2, 1-24. https://doi.org/10.22564/brjg.v40i2.2161

Fagundes, M. B., 2020, Caracterização Petrológica e Geoquímica do Complexo Alcalino do Morro de São João, Casimiro de Abreu-RJ. M.Sc. dissertation, Universidade do Estado do Rio de Janeiro, Brasil. p.116.

Fagundes, M. B., 2024, Petrogênese, evolução magmática do Complexo Alcalino do Morro de São João, sudeste do Brasil, e suas implicações na evolução da Plataforma Sul-Americana. Ph.D. Thesis, Universidade do Estado do Rio de Janeiro, Brazil, p.337.

Fagundes, M. B., Santos, A. C., Geraldes, M. C., Valente, S. C., Guedes, E., Barbosa, T. R. P., Lopes, J. C., 2024, Petrological implications of melanite in the rocks of the Morro de São João Alkaline Complex, Casimiro de Abreu, Rio de Janeiro, Brazil. Brazilian Journal of Geology, 54(3), e20240016. https://doi.org/10.1590/2317- 4889202420240016

Fedi, M., Floria, G., Rapolla, A., 1994, A method to estimate the total magnetization direction from a distortion analysis of magnetic anomalies. Geophysical Prospecting, 42(3), 261–274. https://doi.org/10.1111/j.1365-2478.1994.tb00209.x

Garcés, M., Beamud, E., 2016, La Magnetoestratigrafía y la Escala del Tiempo Geológico basada en las inversiones del campo magnético terrestre. Enseñanza de las Ciencias de la Tierra, v.24, n.3, 282-293. https://raco.cat/index.php/ECT/article/view/328854

GEOSGB, 2022, Dados, Informações e Produtos do Serviço Geológico do Brasil. Disponível em <4. Acesso em: Jan/2022. Available at . Accessed on: Jan/2022.

Gerovska, D., M. J. Araúzo-Bravo, and P. Stavrev, 2009, Estimating the magnetization direction of sources from southeast Bulgaria through correlation between reduced-to-the-pole and total magnitude anomalies: Geophysical Prospecting, 57, 491–505. https://doi.org/10.1111/j.1365-2478.2008.00761.x

Gonzalez, S. P., Barbosa, V. C. F., and Oliveira, Jr., V. C., 2022, Analyzing the ambiguity of the remanent magnetization direction separated into induced and remanent magnetic sources. Journal of Geophysical Research: Solid Earth, 127, e2022JB024151. https://doi.org/10.1029/2022JB024151

Gomes, C. B., Ruberti, E., Comin-Chiaramonti, P., Azzone, R. G., 2011, Alkaline magmatism in the Ponta Grossa Arch , SE Brazil : A review. Journal of South American Earth Sciences, 32(2), 152-168. https://doi.org/10.1016/j.jsames.2011.05.003

Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Counapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T. E., 2020, Array programming with NumPy. Nature, 585, 357–362. https://doi.org/10.1038/s41586-020-2649-2

Heilbron, M., Pedrosa-Soares, A.C., Campos Neto, M., Silva, L.C., Trouw, R.A.J., Janasi, V.C, 2004, A Província Mantiqueira. In: V. Mantesso-Neto, A. Bartorelli, C.D.R. Carneiro, B.B. Brito Neves (eds.) O Desvendar de um Continente: A Moderna Geologia da América do Sul e o Legado da Obra de Fernando Flávio Marques de Almeida. São Paulo, Ed. Beca, cap. XIII, p. 203-234.

Heilbron, M., Eirado, L. G., Almeida, J., 2016, Geologia e Recursos Minerais do Estado do Rio de Janeiro. Nota Explicativa - CPRM, p. 109.

Herz, N.,1977, Timing of spreading in the South Atlantic: Information from Brazilian alkalic rocks. Geological Society of America Bulletin, 88, 1, 101-112. https://doi.org/10.1130/0016-7606(1977)88%3C101:TOSITS%3E2.0.CO;2

Hill, G., Moorkamp, M., Avram, Y., Hogg, C., Mateschke, K., Gahr, S., Schultz, A., Bowles-Martinez, E., Peacock, J., Karcioglu, G., Chen, C., Cimarelli, C., Carrichi, L., Ogawa, Y., 2023, Probing the 4D evolution of active magmatic systems through magnetotelluric monitoring, EGU General Assembly, EGU23-2969, 24–28. https://doi.org/10.5194/egusphere-egu23-2969, 2023

Huang, H., Fraser, D. C., 2001, Airborne resistivity and susceptibility mapping in magnetically polarizable areas. Geophysics, 65(2), 502–511. https://doi.org/10.1190/1.1444744

Jian, X., Liu, S., Hu, X., Zhang, Y., Zhu, D., and Zuo, B., 2022, A new method to estimate the total magnetization direction from the magnetic anomaly: Multiple correlation. Geophysics, 87 (5): G115–G135. doi: https://doi.org/10.1190/geo2021-0733.1

Latypov, R. M., Yu Chistyakova, S., Namur, O., Barnes, S., 2020, Dynamics of evolving magma chambers: textural and chemical evolution of cumulates at the arrival of new liquidus phases. Earth-Science Reviews, v. 210. https://doi.org/10.1016/j.earscirev.2020.103388

Le Maitre, R. W., 2002, Igneous Rocks: A Classification and Glossary of Terms: A Classification and Glossary of Terms. Cambridge University Press. 2nd ed., 236 pp. https://doi.org/10.1017/CBO9780511535581.

Lelièvre, P. G., Oldenburg, D. W., 2009, A 3D total magnetization inversion applicable when significant, complicated remanence is present. Geophysics, 74(3), L21–L30. https://doi.org/10.1190/1.3103249

Li, J., Y. Zhang, G. Yin, H. Fan, and Z. Li, 2017, An approach for estimating the magnetization direction of magnetic anomalies: Journal of Applied Geophysics, 137, 1–7. https://doi.org/10.1016/j.jappgeo.2016.12.009

Li, X., 2006, Understanding 3D analytic signal amplitude. Geophysics, vol. 71, no. 2, B13–B16. https://doi.org/10.1190/1.2184367

Magee, C., Stevenson, C. T. E., Ebmeier, S. K., Keir, D., Hammond, O. S., Gottsmann, J, H., Whaler, K, A., Schofield, N., Jackson, C. A-L., Petronis, M. S., O’Driscoll, B., Morgan, J., Cruden., A., Vollgger., A. A., Dering, G., Micklethwaite, S., Jackson, M. D., 2018, Magma Plumbing Systems: A Geophysical Perspective. Journal of Petrology, Vol. 59, No. 6, 1217–1251. https://doi.org/10.1093/petrology/egy064

Matos, C. A. de, & Mendonca, C. A., 2020, Poisson magnetization-to-density-ratio and magnetization inclination properties of banded iron formations of the Carajás mineral province from processing airborne gravity and magnetic data. Geophysics, 85( 5), K1-K11. https://doi.org/10.1190/geo2019-042.1

Marangoni, Y, R., Mantovani, M. S. M., 2013, Geophysical Signatures of the alkaline intrusions bordering the Paraná Basin. Journal of South American Earth Sciences. v41, p.p. 83-98. https://doi.org/10.1016/j.jsames.2012.08.004

Marsh, B.D., 2006, Dynamics of magmatic systems. Elements, 2(5):287-292. https://doi.org/10.2113/gselements.2.5.287

Mazaud, A., 2007, Geomagnetic Polarity Reversals. In D. Gubbins & E. Herrero-Bervera (Eds.), Encyclopedia of geomagnetism and paleomagnetism (pp. 320–324). Dordrecht: Springer Netherlands.

Mohriak, W. U., Almeida, J. C. H., Gordon, A. C. (2022). South Atlantic Ocean: postbreakup configuration and Cenozoic magmatism. In: Meso-Cenozoic Brazilian Offshore Magmatism. Academic Press. 1-45. https://doi.org/10.1016/B978-0-12-823988-9.00007-1

Mota, C.E.M., 2012, Petrogênese e geocronologia das intrusões alcalinas de Morro Redondo, Mendanha e Morro de São João: caracterização do magmatismo alcalino no estado do Rio de Janeiro e implicações geodinâmicas. Ph.D. thesis. Universidade do Estado do Rio de Janeiro, Brazil. 203 pp.

Mota, C.E.M., Geraldes, M. C., de Almeida, J. C. H., Vargas, T., de Souza, D. M., Loureiro, R. O., da Silva, A. P., 2009, Características Isotópicas (Nd e Sr), Geoquímicas e Petrográficas da Intrusão Alcalina do Morro do São João: Implicações Geodinâmicas e Sobre a Composição do Manto Sublitosférico. Geologia USP - Série Científica, São Paulo, 9, n. 1, 85-100. https://doi.org/10.5327/Z1519-874X2009000100006

Motoki, A., Araujo, A. N., Geraldes, M. C., Jourdan, F., Motoki., K. F., Silva, S., 2013, Nepheline syenite magma differentiation with Continental crustal assimilation for the Cabo Frio Island Intrusive Complex, State of Rio de Janeiro, Brazil. Geociências. 32(2): 195-218.

Mollo, S., Hammer, J. E., 2017, Dynamic crystallization in magmas. EMU Notes in Mineralogy, 6, 373-418. https://doi.org/10.1180/EMU-notes.16.12

Muller, R. A, 2002, Avalanches at the core-mantle boundary». Geophys. Res. Lett. 29 (19). https://doi.org/10.1029/2002GL015938

Nabighian, M. N., 1972, The analytic signal of two-dimensional magnetic bodies with polygonal cross-section - Its properties and use for automated anomaly interpretation: Geophysics, 37, 3, 507–517. https://doi.org/10.1190/1.1440276.

Nabighian, M. N., 1974, Additional comments on the analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Geophysics, 39,1, 85-92. https://doi.org/10.1190/1.1440416

Nabighian, M. N, Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y., Peirce, J. W., Phillips, J. D., and Ruder, M. E., 2005, The historical development of the magnetic method in exploration. Geophysics, 70:6 33ND-61ND. https://doi.org/10.1190/1.2133784

Oliveira Jr., V. C., Sales, D. P., Barbosa, V. C. F., Uieda, L., 2015, Estimation of the total magnetization direction of approximately spherical bodies. Nonlinear Processes in Geophysics, 22(2), 215–232. https://doi.org/10.5194/npg-22-215-2015

Ravat, D., 2007, Crustal magnetic field. In D. Gubbins & E. Herrero-Bervera (Eds.), Encyclopedia of geomagnetism and paleomagnetism (pp. 140–144). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-4423-6_5

Reid, A., 2012, Forgotten truths, myths and sacred cows of Potential Fields Geophysics - II, in SEG Technical Program Expanded Abstracts 2012, pp. 1-3, Society of Exploration Geophysicists. https://doi.org/10.1190/segam2012-0178.1

Reis, A. L. A., Oliveira Jr., V. C., and Barbosa, V. C. F., 2020, Generalized positivity constraint on magnetic equivalent layers. Geophysics, 85(6), J99–J110. https://doi.org/10.1190/geo2019-0706.1

Ribeiro-Filho, N., Bijani, R., Ponte-Neto, C., 2020, Improving the crosscorrelation method to estimate the total magnetization direction vector of isolated sources: A space-domain approach for unstable inclination values. Geophysics, 85(4), J59–J70. https://doi.org/10.1190/geo2019-0008.1

Riccomini, C., Sant’Anna, L.G., Ferrari, A.L., 2004, Evolução geológica do Rift Continental do Sudeste do Brasil. In: Mantesso-Neto V., Bartorelli A., Carneiro C.D.R., Britto-Neves B.B. (Org.) Geologia do Continente Sul-americano: Evolução da obra de Fernando Flávio Marques de Almeida. Beca, São Paulo, 647 p.

Riccomini, C.; Velázquez, V. F.; Gomes, C. B., 2005, Tectonic Controls of the Mesozoic and Cenozoic Alkaline Magmatism in Central-Southeastern Brazilian Platform. In: Comin-Chiaramonti, P., Gomes, C. Mesozoic to Cenozoic alkaline magmatism in central-southeastern Brazilian Platform. Editora da Universidade de São Paulo. 2017, p. 31–55.

Roest, W. R., Pilkington, M., 1993, Identifying remanent magnetization effects in magnetic data. Geophysics, 58(5), 653–659. https://doi.org/10.1190/1.1443449

Rosa, P.A. da S., Ruberti, E., 2018, Nepheline syenites to syenites and granitic rocks of the Itatiaia Alkaline Massif, Southeastern Brazil: new geological insights into a migratory ring Complex. Brazilian Journal of Geology. 48, 347–372. https://doi.org/10.1590/2317-4889201820170092

Sadowski, G.R., Dias Neto, C.M., 1981, O lineamento sismo-tectônico de Cabo Frio. Revista Brasileira de Geociências, v. 11, no. 4, p. 209-212. https://doi.org/10.25249/0375-7536.1981209212

Sales, T. J. B., Martins, S. S, 2024, Aeromagnetic geophysical data 3D inversion: Revealing internal and external structures of Morro São João Alkaline Complex, Southeast Brazil. Journal of South American Earth Sciences, 144, 105008. https://doi.org/10.1016/j.jsames.2024.105008

Schmitt, R.S., Trouw, R.A.J., Schmus, W.R.V., Pimentel, M. M., 2004, Late amalgamation in the central part of Western Gondwana: new geochronological data and the characterization of a Cambrian collision orogeny in the Ribeira Belt (SE Brazil).Precambrian Research, 133:29-61. https://doi.org/10.1016/j.precamres.2004.03.010

Sharma, P.V., 1987, Magnetic Method applied to mineral exploration: Ore Geology Reviews, 2(4), 323–357. https://doi.org/10.1016/0169-1368(87)90010-2

Sleep, N. H., 1990, Hot-spots and mantle plumes: Some phenomenology. Journal of Geophysical Research, v. 95, p. 6715-6736. https://doi.org/10.1029/JB095iB05p06715

Sonoki, I.K., Garda. G. M., 1988, Idades K-Ar de rochas alcalinas do Brasil Meridional e Paraguai Oriental: compilação e adaptação às novas constantes de decaimento. Bol. IG-USP, Cien., v. 19, p. 63–85. https://doi.org/10.11606/issn.2316-8986.v19i0p63-85

Streckeisen, A.L. 1976. Classification and Nomenclature of Igneous Rocks. Neues Jahrbuch für Mineralogie, 107, 144-240.

Telford, W. M., Geldart, L. P., Sheriff R. E., 1990, Applied Geophysics, 2nd ed. Cambridge University Press, Cambridge, 770 pp. https://doi.org/10.1017/CBO9781139167932

Teodoro, M. A. M., Santos, A. C., Bertolino, L. C., Rosa, Pedro, A. S., Bezerra, C. R., Monteiro, L. G. P., Lopes, J. C., Fagundes, M. B., Geraldes, M., Cardoso, L. M. C., Jourdan, F., 2025, Poços de Caldas – Cabo Frio Alignment: a Petrochronological Review of an Unconventional Plume Model. Anuário do Instituto de Geociências, https://doi.org/10.11137/1982-3908_2025_48_65281

Thomaz Filho A., Rodrigues A.L., 1999, O alinhamento de rochas alcalinas Poços de Caldas- Cabo Frio (RJ) e sua continuidade na Cadeia Vitória-Trindade. Brazilian Journal of Geology, v. 29 (2), p. 189–194. https://doi.org/10.25249/0375-7536.199929189194

Thompson, R.N., Gibson, S.A., Mitchell, J.G., Dickin, A.P., Leonardos, O.H., Brod, J.A., Greenwood, J.C., 1998, Migrating Cretaceous-Eocene Magmatismin the Serra do Mar Alkaline Province, SE Brazil: Melts from the Deflected Trindade Mantle Plume? Journal of Petrology. 39, 1493–1526. https://doi.org/10.1093/petroj/39.8.1493

Tontini, F. C., Pedersen, L. B., 2008, Interpreting magnetic data by integral moments. Geophysical Journal International, 174(3), 815–824. https://doi.org/10.1111/j.1365-246X.2008.03872.x

Tupinambá, M., Heilbron, M., Valeriano, C., Porto Júnior, R., De Dios, F.B., Machado N., Silva L.G. E., Almeida, J. C. H., 2012, Juvenile contribution of the Neoproterozoic Rio Negro Magmatic Arc (Ribeira Belt, Brazil): Implications for Western Gondwana amalgamation. Gondwana Research, v. 21, p. 422–438. https://doi.org/10.1016/j.gr.2011.05.012

Ulbrich, H.H.G.J., Demaiffe, D., Vlach, S.R.F., Ulbrich, M.N.C., 2003, Geochemical and Sr, Nd and Pb isotope signatures of phonolites and nepheline syenites from Poços de Caldas alkaline massif, southeastern Brazil. 4th South American Symposium on Isotope Geology, Salvador, Short Papers, pp. 698-701.

Valeriano, C., D. E. M., Tupinambá, M., Simonetti, A., Heilbron, M., Almeida, J.C.H., 2011, U-Pb LA-MC-ICPMS geochronology of Cambro-Ordovician post-collisional granites of the Ribeira belt, southeast Brazil: Terminal Brasiliano magmatism in central Gondwana supercontinent. Journal of South American Earth Sciences, v. 32, p. 416– 428. https://doi.org/10.1016/j.jsames.2011.03.003

Ville, J., 1948, Théorie et applications de la notion de signal analytique: Cables et Transmissions, 2A, 61–74.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peteron, P., Weckesser, W., Bright, J., vn der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, I, Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, Quintero, E. A., Harris, C. R., Archibald. A. M., Ribeiro, A, H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors, 2020, SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2

Vlach, S. R. F., Ulbrich, H. H. G. J., Ulbrich, M. N. C., Vasconcelos, P. M., 2018, Melanite-bearing nepheline syenite fragments and 40Ar/39Ar age of phlogopite megacrysts in conduit breccia from the Poços de Caldas Alkaline Massif (MG/SP), and implications. Brazilian Journal of Geology, 48(2), 391-402. https://doi.org/10.1590/2317-4889201820170095

Wilson, R., 1972, Palaeomagnetic Differences Between Normal and Reversed Field Sources, and the Problem of Far-sided and Right-handed Pole Positions. Geophysical Journal International, 28, 295-304. https://doi.org/10.1111/J.1365- 246X.1972.TB06130.X

Zhang, H., D. Ravat, Y. R. Marangoni, G. Chen, and X. Hu, 2018, Improved total magnetization direction determination by correlation of the normalized source strength derivative and the reduced-to-pole fields: Geophysics, 83, no. 6, J75–J85. https://doi.org/10.1190/geo2017-0178.1




DOI: http://dx.doi.org/10.22564/brjg.v43i1.2332

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.





 

>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)

 

Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br

Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.

Creative Commons