CHANGE DETECTION SOFTWARE USING SELF-ORGANIZING FEATURE MAPS

Nilton Correia da Silva, Osmar Abílio de Carvalho Júnior, Antonio Nuno de Castro Santa Rosa, Renato Fontes Guimarães, Roberto Arnaldo Trancoso Gomes

Resumo


Os mapas auto-organizáveis (SOFM) consistem em um tipo de rede neural artificial que permite a conversão de dados de alta dimensão, complexos e não lineares, em simples relações geométricas com baixa dimensionalidade. Este método também pode ser utilizado para a classificação de imagens de sensoriamento remoto, pois permite a compressão de dados de alta dimensão preservando as relações topológicas dos dados primários. Este trabalho objetiva desenvolver uma metodologia eficaz para a utilização de mapas auto-organizáveis na detecção de mudanças. No presente estudo o SOFM é utilizado para a classificação não supervisionada de dados de sensoriamento remoto, considerando os seguintes atributos: espaciais (x, y), espectrais e temporais. O método é empregado na região oeste da Bahia, que teve recentemente um aumento significativo em monoculturas. Testes foram realizados com os parâmetros do SOFM com o objetivo de refinar o mapa de detecção demudanças. O SOFM possibilita uma melhor seleção de células e dos correspondentes vetores de peso, que mostram o processo de ordenação e agrupamento hierárquicodos dados. Esta informação é essencial para identificar mudanças ao longo do tempo. Um programa em linguagem C ++ do método proposto foi desenvolvido.

ABSTRACT. Self-organizing feature maps (SOFM) consist of a type of artificial neural network that allows the conversion from high-dimensional data into simple geometric relationships with low-dimensionality. This method can also be used for classification of remote sensing images because it allows the compression of high dimensional data while preserving the most important topological and metric relationships of the primary data. This paper aims to develop an effective methodology forusing self-organizing maps in change detection. In this study, SOFM is used for unsupervised classification of remote sensing data, considering the following attributes: spatial (x and y), spectral and temporal. The method is tested and simulated in the western region of Bahia that has observed a significant increase in mechanized agriculture. Tests were performed with the SOFM parameters for the purpose of fine tuning a change detection map. The SOFM provides the best selection of cell and corresponding adjustment of weight vectors, which show the process of ordering and hierarchical clustering of the data. This information is essential to identify changes over time. All algorithms were implemented in C++ language.

Keywords: unsupervised classification; land cover; multitemporal analysis; remote sensing


Palavras-chave


classificação não supervisionada; cobertura da terra; análise multitemporal; sensoriamento remoto

Texto completo:

PDF


DOI: http://dx.doi.org/10.22564/rbgf.v30i4.237