Geophysical surveying for the detection of ferrous-based objects: possibilities for depth estimative combining analytic signal and vertical integral of the anomalous magnetic field

Alessandra de Barros e Silva Bongiolo, Luizemara Soares Alves Szameitat, Rodoilton Stevanato, Rafael Espíndola Canata, Henrique Garcia Pereira, Francesco Antonelli

Abstract


The detection of buried clandestine objects challenges forensic and archeologic search group teams on varying terrains, and variable scales of research. Therefore, the study of controlled buried objects is useful for trainings in geophysical acquisition and processing. In this study, we applied ground survey data for testing the magnetic method at controlled geophysical sites for the location of ordinary objects and firearms. We used data filtering techniques in order to facilitate the location of magnetic targets. Also, we experienced the 3D inversion of analytic signal of the vertically integrated magnetic field (ASVI), for the location of targets in depth. As a result, the study determined the location of four magnetic targets, and a three-dimensional view was constructed from the estimated magnetic susceptibility. We concluded that modeling transformed magnetic data is an affordable technique for application in near-surface investigations. Also, this experiment exemplifies the relevance of magnetic methods for location of excavation sites on the basis of geophysical methods.


Keywords


forensic geosciences; magnetometry; controlled site; buried objects;

Full Text:

PDF

References


Alves, K.L., M.L.B. Blum, and W.R. Borges, 2013, Mapeamento de alvos forenses com GPR 3D: 13th International Congress of the Brazilian Geophysical Society, Rio de Janeiro, RJ, Janeiro, Brazil: SBGf, doi: 10.1190/sbgf2013-174.

Aquila, I., F. Ausania, C. Di Nunzio, A. Serra, S. Boca, A. Capelli, P. Magni, and P. Ricci, 2014, The role of forensic botany in crime scene investigation: case report and review of literature: Journal of Forensic Sciences, 59, 3, 820–824, doi: 10.1111/1556-4029.12401.

Baranov, V., 1957, A new method for interpretation of aeromagnetic maps: pseudo-gravimetric anomalies: Geophysics, 22, 359–383, doi: 10.1190/1.1438369.

Baranov, V., and H. Naudy, 1964, Numerical calculation of the formula of reduction to the magnetic pole: Geophysics, 29, 67–79, doi: 10.1190/1.1439334

Bigarella, J.J., R. Salamuni, and A.N. Ab’Saber, 1961, Origem e ambiente de deposição da Bacia de Curitiba: Boletim Paranaense de Geografia, UFPR, Curitiba, 4/5, 71–81.

Blum, M.L.B., 2007, Uso da Geofísica em Perícias de Crimes Ambientais - Uma introdução: Revista Perícia Federal. Associação Nacional dos Peritos Criminais Federais, Ano VIII, 25, 1–4.

Blum M.L.B., and D. Russo, 2012, SITICRIM – Brazilian Test Site for Forensic Geophysical Research: European Academy of Forensic Science Conference, The Hague, Netherlands, EAFS, poster.

Bongiolo A.B.S., and R.E. Canata, 2019, O Sítio Controlado de Geofísica Forense Arqueológica e Paleontológica do LPGA/UFPR: Instalação e Resultados no Uso do Radar de Penetração de Solo (GPR): PROGEO – Congresso Brasileiro de Profissionais das Geociências, Anais do Congresso Brasileiro de Profissionais das Geociências, São Paulo, SP, Brazil: Federação Brasileira de Geologia – FEBRAGEO, v. 1. p. 15.

Bongiolo, A.B.S., L.S.A. Szameitat, R.E. Canata, R. Stevanato, H.G. Pereira, and F. Antonelli, 2021, Sítio Controlado de Geofísica Rasa da UFPR: Relatório final do levantamento e processamento de dados magnéticos terrestres. Curitiba: Acervo Digital da UFPR, 2021. Technical Report and Data. Available at .

Borges, W.R., 2007, Caracterização geofísica de alvos rasos com aplicações no planejamento urbano e meio ambiente: estudo sobre o sítio controlado do IAG / USP: PhD Thesis. Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Departamento de Geofísica, Universidade de São Paulo, Brazil, 264 pp.

Buck, S.C., 2003, Searching for graves using geophysical technology: field tests with ground penetrating radar, magnetometry, and electrical resistivity. Journal of Forensic Sciences, 48, 5 –11, doi: 10.1520/JFS2002165.

Buso, D.S.O., M.L.B. Blum, and W.R. Borges, 2016, Imageamento GPR 3D de alvos forenses na área do sítio controlado de criminalística (SITCRIM): VII Simpósio Brasileiro de Geofísica, SimBGf, Ouro Preto, MG, Brazil, SBGf, doi: 10.22564/7simbgf2016.092.

Canata, R.E., 2020, Diagnóstico de parâmetros geofísicos usados em geociências forenses: PhD Thesis, Post-Graduate Program in Geology, Universidade Federal do Paraná, Curitiba, PR, Brazil, 176 pp.

Canata, R.E., F.J.F. Ferreira, W.R. Borges, F.A.S. Salvador, and A.B.S. Bongiolo, 2019, GPR 3D aplicado no Sítio Controlado de Geofísica Forense da UFPR: 16th International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil, SBGf, doi: 10.22564/16cisbgf2019.260.

Canata, R.E., F.J.F. Ferreira, W.R. Borges, and F.A.S. Salvador, 2020, Analysis of 2D and 3D GPR responses in the Federal University of Paraná Forensic Geophysics Controlled Site – A Case Study: Brazilian Journal of Geophysics, 38, 2, 1–17, doi: 10.22564/rbgf.v38i2.2045

Cavalcanti, M.M., M.P. Rocha, M.L.B. Blum, and W.R. Borges, 2018, The forensic geophysical controlled research site of the University of Brasilia, Brazil: Results from methods GPR and electrical resistivity tomography: Forensic Science International, 293, 101e1–101e21, doi: 10.1016/j.forsciint.2018.09.033.

De Paula, G.B., C.A. Mendonça, and F.Y. Hiodo, 2007, Levantamentos magnéticos para estudos de geofísica rasa: Uma experiência de campo no Sítio Controlado de Geofísica Rasa (SCGR) do IAG/USP: 10th International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil, SBGf, doi: 10.1190/sbgf2007-217.

Delazari, L.S., and L. Ercolin Filho, 2018, Projeto UFPR CampusMap: Curitiba, UFPR, CEPAG – Centro de Pesquisas Aplicadas em Geoinformação. Project in Progress. Available at: . Access on: April 6, 2021.

Dupras, T., J. Schultz, S. Wheeler, and L. Williamns, 2006, Forensic Recovery of Human Remains: Archaeological Approaches. Taylor & Francis Group Publishers, Boca Raton, Florida, USA, 232 pp, doi: 10.1201/9781420037944.

Ellis, R.G., B. De Wet, and I.N. MacLeod, 2012, Inversion of magnetic data from remanent and induced sources: ASEG Extended Abstracts, 2012, 1, 1–4, doi: 10.1071/ASEG2012ab117.

Eskola, L., T. Jokinen, H. Soininen, and T. Tervo, 1993, Some remarks on static field thin sheet models: Journal of Applied Geophysics, 30, 229–234, doi: 10.1016/0926-9851(93)90029-X.

France, D.L., T.J. Griffin, J.G. Swanburg, J.W. Lindemann, G.C. Davenport, V. Trammell, C.T. Armbrust, B. Kondratieff, A. Nelson, K. Castellano, and D. Hopkins, 1992, A multidisciplinary approach to the detection of clandestine graves: Journal of Forensic Science, 37, 6, 1445–1458, doi: 10.1520/JFS13337J.

Grant, F.S., and J. Dodds, 1972, MAGMAP FFT Processing System Development Notes: Paterson Grant and Watson Limited, Toronto, Canada, 230.

Li, X., 2006, Understanding 3D analytic signal amplitude: Geophysics, 71, 2, L13–L16, doi: 10.1190/1.2184367.

Li, X., 2008, Magnetic reduction-to-the-pole at low latitudes: Observations and considerations: The Leading Edge, 27, 8, 990–1002, doi: 10.1190/1.2967550.

Lourenço, V.L., 2009, Utilização do Radar da penetração nos solos (GPR) na detecção de estruturas no âmbito da Ciências Forenses: Final Undergraduate Project (Centro de Geofísica), Universidade de Évora, Portugal, 44 f.

Luiz, J.G., N.R.M. Fonseca, A.M.O. Moreira, and C.P.Q. Furtado, 2007, Medidas magnéticas, eletromagnéticas e elétricas no ambiente natural do campo de testes da UFPA: 10th International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil, SBGf, doi: 10.1190/sbgf2007-027.

MacLeod, I.N., S. Vieira, and A.C. Chaves, 1993a, Analytic Signal and Reduction-to-the-Pole in the Interpretation of Total Magnetic Field Data at Low Magnetic Latitudes: 3rd International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil, SBGf, doi: 10.3997/2214-4609-pdb.324.830

MacLeod, I.N., K. Jones, and T.F. Dai, 1993b, 3-D Analytic Signal in the Interpretation of Total Magnetic Field Data at Low Magnetic Latitudes: Exploration Geophysics, 24, 3-4, 679–688. doi: 10.1071/EG993679.

Marchetti, M., M. Chiappini, and A. Meloni, 1998, A test site for the magnetic detection of buried steel drums: Annali di Geofisica, 41, 3, 491–498, doi: 10.4401/ag-4355.

Nabighian, M.N., 1972, The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation: Geophysics, 37, 507–517, doi: 10.1190/1.1440276.

Nettleton, L.L., 1962, Gravity and magnetics for geologists and seismologists: AAPG Bulletin, 46, 10, 1815–1838, doi: 10.1306/BC7438F3-16BE-11D7-8645000102C1865D.

Paine, J., M. Haederle, and M. Flis, 2001, Using transformed TMI data to invert for remanently magnetised bodies: Exploration Geophysics, 32, 238–242, doi: 10.1071/EG01238.

Porsani, J.L., 2002, Caracterização geofísica de alvos rasos com aplicações no planejamento urbano, meio ambiente e arqueologia: estudo sobre o sítio controlado do IAG/USP, Projeto de pesquisa. Processo Fapesp nº 02/07509-1, São Paulo, SP, Brazil.

Porsani, J.L., W.R. Borges, S.I. Rodrigues, and F.Y. Hiodo, 2006, O Sítio Controlado de Geofísica Rasa do IAG/USP: Instalação e resultados GPR 2D-3D: Revista Brasileira de Geofísica, 24, 1, 49–61, doi: 10.1590/S0102-261X2006000100004.

Pringle, J.K., J. Jervis, J.P. Cassella, and N.J. Cassidy, 2008, Time-Lapse Geophysical Investigations over a Simulated Urban Clandestine Grave: Journal of Forensic Sciences, 53, 6, 1405–1416, doi: 10.1111/j.1556-4029.2008.00884.x

Pringle, J.K., M. Giubertoni, N.J. Cassidy, K.D. Wisniewski, J.D. Hansen, N.T. Lindford, and R.M. Daniels, 2015, The use of magnetic susceptibility as a forensic search tool: Forensic Science International, 246, 31–42, doi: 10.1016/j.forsciint.2014.10.046.

Pye, K., and D.J. Croft, 2004, Forensic Geoscience: introduction and overview, in Pye, K., and D.J. Croft, Eds., Forensic Geoscience: Principles, Techniques and Applications: Geological Society, London, Special Publications, 232, 1–5, doi: 10.1144/GSL.SP.2004.232.01.01.

Rinehart, D., 2003, Excavations of skeletal remains from an anthropological point of view: Rinehart Forensics: Available at: . Access on: April 4, 2021.

Rodrigues, S.I., 2004, Caracterização GPR de tambores metálicos e plásticos: Estudo sobre o Sítio Controlado do IAG/USP: Master Dissertation, USP, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, São Paulo, SP, Brazil, 102 pp.

Rodrigues, S.I., and J.L. Porsani, 2006, Utilização do GPR para caracterizar tambores de plásticos enterrados no Sítio Controlado de Geofísica Rasa do IAG/USP: Revista Brasileira de Geofísica, 24, 2, 157–168, doi: 10.1590/S0102-261X2006000200001.

Roest, W.R., J. Verhoef, and M. Pilkington, 1992, Magnetic interpretation using the 3-D analytic signal: Geophysics, 57, 116–125, doi: 10.1190/1.1443174.

Ruffell, A., and J. McKinley, 2005, Forensic geoscience: applications of geology, geomorphology and geophysics to criminal investigations: Earth-Science Reviews, 69, 235–247, doi: 10.1016/j.earscirev.2004.08.002.

Ruffell, A., and J. McKinley, 2014, Forensic geomorphology: Geomorphology, 206, 14–22, doi: 10.1016/j.geomorph.2013.12.020.

Salem, A., T. Hamada, J.K. Asahina, and K. Ushijima, 2005, Detection of unexploded ordnance (UXO) using marine magnetic gradiometer data: Exploration Geophysics, 36, 1, 97–103, doi: 10.1071/EG05097.

Silva, J.B.C., 1996, 2-D magnetic interpretation using the vertical integral: Geophysics, 61, 387–393, doi: 10.1190/1.1443967.

Thébault, E., C.C. Finlay, C.D. Beggan, P. Alken, J. Aubert, O. Barrois, F. Bertrand, T. Bondar, A. Boness, L. Brocco, E. Canet, A. Chambodut, A. Chulliat, P. Coïsson, F. Civet, A. Du, A. Fournier, I. Fratter, N. Gillet, B. Hamilton, M. Hamoudi, G. Hulot, T. Jager, M. Korte, W. Kuang, X. Lalanne, B. Langlais, J.-M. Léger, V. Lesur, F.J. Lowes, S. Macmillan, M. Mandea, C. Manoj, S. Maus, N. Olsen, V. Petrov, V. Ridley, M. Rother, T.J. Sabaka, D. Saturnino, R. Schachtschneider, O. Sirol, A. Tangborn, A. Thomson, L. Tøffner-Clausen, P. Vigneron, I. Wardinski, and T. Zvereva, 2015, International geomagnetic reference field: The 12th generation: Earth, Planets and Space, 67, 79, 19 pp, doi: 10.1186/s40623-015-0228-9.




DOI: http://dx.doi.org/10.22564/brjg.v40i1.2132

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.





 

>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)

 

Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br

Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.

Creative Commons