Structure-oriented filtering in Crossplotting and k-means
Abstract
Several authors have proposed new techniques using multi-attribute analysis and machine learning. Studying the influence of different data treatments on such techniques is essential. We analyze the results by applying two clustering techniques, Crossplotting, and k-means, in filtered data. In particular, we use structure-oriented filtered seismic data before calculating seismic attributes. We use a migrated section of the Buzios field from the Brazilian pre-salt in the Santos Basin. We find that combining filtering and clustering techniques can improve salt identification.
Keywords
Full Text:
PDFReferences
Amin, A., and M. Deriche, 2015, A hybrid approach for salt dome detection in 2D and 3D seismic data: 2015 IEEE International Conference on Image Processing (ICIP), IEEE, 2537–2541. doi: 10.1109/ICIP.2015.7351260.
Asjad, A., and D. Mohamed, 2015, A new approach for salt dome detection using a 3D multidirectional edge detector: Applied Geophysics, 12, 334–342, doi: 10.1007/s11770-015-0512-2.
Berthelot, A., A. H. S. Solberg, E. Morisbak, and L. J. Gelius, 2011, Salt diapirs without well defined boundaries - a feasibility study of semi-automatic detection: Geophysical Prospecting, 59, 682–696, Braz. J. Geophys., 40, 1, 2022 114 STRUCTURE-ORIENTED FILTER IN CLUSTERING doi: 10.1111/j.1365-2478.2011.00950.x.
Chopra, S., and K. J. Marfurt, 2018, Seismic facies classification using some unsupervised machinelearning methods: SEG Tech. Progr. Expand. Abstr. 2018, Society of Exploration Geophysicists, 2056–2060. doi: 10.1190/segam2018-2997356.1.
Coléou, T., M. Poupon, and K. Azbel, 2012, Unsupervised seismic facies classification: A review and comparison of techniques and implementation: The Leading Edge, 22, 921–1056, doi: 10.1190/1.1623635.
Farrokhnia, F., A. R. Kahoo, and M. Soleimani, 2018, Automatic salt dome detection in seismic data by combination of attribute analysis on CRS images and IGU map delineation: Journal of Applied Geophysics, 159, 395–407, doi: 10.1016/J.JAPPGEO.2018.09.018.
Fehmers, G. C., and C. F. Höcker, 2003, Fast structural interpretation with structure-oriented filtering: Geophysics, 68, 1286–1293, doi: 10.1190/1.1598121.
Hale, D., 2009, Structure-oriented Smoothing and Semblance: CWP Report, CWP-635, 261–270.
Halpert, A. D., R. G. Clapp, and B. Biondi, 2014, Salt delineation via interpreter-guided 3D seismic image segmentation: Interpretation, 2, T79–T88, doi: 10.1190/INT-2013-0159.1.
Ketchen Jr., D. J., and C. L. Shook, 1996, The application of cluster analysis in strategic management research: an analysis and critique: Strategic Management Journal, 17, 441–458, doi: 10.1002/(SICI)1097-0266(199606)17:63.0.CO;2-G.
Kubat, M., 2017, An introduction to machine learning: Springer International Publishing.
Lloyd, S., 1982, Least squares quantization in pcm: IEEE Transactions on Information Theory, 28, 129–137, doi: 10.1109/TIT.1982.1056489.
Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, 2011, Scikit-learn: Machine learning in Python: Journal of Machine Learning Research, 12, 2825–2830, doi: 10.5555/1953048.2078195.
Qi, J., T. Lin, T. Zhao, F. Li, and K. Marfurt, 2016, Semisupervised multiattribute seismic facies analysis: Interpretation, 4, SB91–SB106, doi: 10.1190/INT-2015-0098.1.
Steinhaus, H., 1957, Sur la division des corps matériels en parties: Bull. Acad. Polon. Sci., 801– 804.
Subrahmanyam, D., and P. H. Rao, 2008, Seismic Attributes- A Review: 7th International Conference & Exposition on Petroleum Geophysics.
Thorndike, R. L., 1953, Who Belongs in a Family?: Psychometrica, 267–276, doi: 10.1117/12.620399. Zhao, T., V. Jayaram, A. Roy, and K. J. Marfurt, 2015, A comparison of classification techniques for seismic facies recognition: Interpretation, 3, SAE29–SAE58, doi: 10.1190/INT-2015-0044.1.
.
DOI: http://dx.doi.org/10.22564/brjg.v40i1.2137
This work is licensed under a Creative Commons Attribution 4.0 International License.
a partir do v.37n.4 (2019) até o presente
v.15n.1 (1997) até v.37n.3 (2019)
Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br
Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.