### Signal Decomposition and Time-Frequency Representation Using Variable-Length Symmetric Filters

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Andrade, M. C., M. J. Porsani, and B. Ursin, 2018, Complex autoregressive time-frequency analysis: estimation of time-varying periodic signal components: IEEE Signal Processing Magazine, 35, 142– 153, doi: 10.1109/MSP.2017.2783942.

Angelsen, B. A., 1981, Instantaneous frequency, mean frequency, and variance of mean frequency estimators for ultrasonic blood velocity Doppler signals: IEEE Transactions on Bio-medical Engineering, 28, 733–741, doi: 10.1109/TBME.1981.324853.

Auger, F., P. Flandrin, Y.-T. Lin, S. McLaughlin, S. Meignen, T. Oberlin, and H.-T. Wu, 2013, Time-frequency reassignment and synchrosqueezing: An overview: IEEE Signal Processing Magazine, 30, 32–41, doi: 10.1109/MSP.2013.2265316.

Burg, J. P., 1975, Maximum entropy spectral analysis.: PhD thesis, Stanford University. Castagna, J. P., S. Sun, and R. W. Siegfried, 2003, Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons: The Leading Edge, 22, 120–127, doi: 10.1190/1.1559038.

Chen, S. S., D. L. Donoho, and M. A. Saunders, 2001, Atomic decomposition by basis pursuit: SIAM Review, 43, 129–159, doi: 10.1137/S003614450037906X.

Cheng, J., and M. Sacchi, 2016, Fast and memory efficient singular spectrum analysis for seismic data reconstruction and denoising: SEG Technical Program Expanded Abstracts 2016, Society of Exploration Geophysicists, 4064–4068. doi: 10.1190/segam2016-13955076.1.

Cohen, L., 1989, Time-frequency distributions - a review: Proceedings of the IEEE, 77, 941–981, doi: 10.1109/5.30749.

Colominas, M. A., G. Schlotthauer, and M. E. Torres, 2014, Improved complete ensemble EMD: A suitable tool for biomedical signal processing: Biomedical Signal Processing and Control, 14, 19–29, doi: 10.1016/j.bspc.2014.06.009.

Dragomiretskiy, K., and D. Zosso, 2014, Variational mode decomposition: IEEE Transactions on Signal Processing, 62, 531–544, doi: 10.1109/TSP.2013.2288675.

Fomel, S., 2013, Seismic data decomposition into spectral components using regularized nonstationary autoregression: Geophysics, 78, O69–O76, doi: 10.1190/geo2013-0221.1.

Fourer, D., J. Harmouche, J. Schmitt, T. Oberlin, S. Meignen, F. Auger, and P. Flandrin, 2017, The ASTRES toolbox for mode extraction of non-stationary multicomponent signals: 2017 25th European Signal Processing Conference (EUSIPCO), 1130–1134. doi: 10.23919/EUSIPCO.2017.8081384.

Gabor, D., 1946, Theory of communication. Part 1: The analysis of information: Journal of the Institution of Electrical Engineers - Part III: Radio and Communication Engineering, 93, 429–441, doi: 10.1049/ji-3-2.1946.0074.

Golub, G. H., and C. F. V. Loan, 1996, Matrix computations, 3rd ed.: Johns Hopkins University Press.

Golyandina, N., and A. Zhigljavsky, 2020, Singular spectrum analysis for time series, 2nd ed.: Springer. 146 pp. doi: 10.1007/978-3-662-62436-4

Han, J., and M. van der Baan, 2013, Empirical mode decomposition for seismic time-frequency analysis: Geophysics, 78, O9–O19, doi: 10.1190/geo2012- 0199.1.

Harmouche, J., D. Fourer, F. Auger, P. Borgnat, and P. Flandrin, 2018, The sliding singular spectrum analysis: A data-driven nonstationary signal decomposition tool: IEEE Transactions on Signal Processing, 66, 251–263, doi: 10.1109/TSP.2017.2752720.

Harris, T. J., and H. Yuan, 2010, Filtering and frequency interpretations of singular spectrum analysis: Physica D: Nonlinear Phenomena, 239, 1958– 1967, doi: 10.1016/j.physd.2010.07.005.

Herrera, R. H., J. Han, and M. van der Baan, 2014, Applications of the synchrosqueezing transform in seismic time-frequency analysis: Geophysics, 79, V55–V64, doi: 10.1190/geo2013-0204.1.

Hu, H., S. Guo, R. Liu, and P. Wang, 2017, An adaptive aingular spectrum analysis method for extracting brain rhythms of electroencephalography: PeerJ, 5, e3474, doi: 10.7717/peerj.3474.

Huang, N. E., Z. Shen, and S. R. Long, 1999, A new view of nonlinear water waves: The Hilbert spectrum: Annual Review of Fluid Mechanics, 31, 417– 457, doi: 10.1146/annurev.fluid.31.1.417.

Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, 1998, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454, 903–995, doi: 10.1098/rspa.1998.0193.

Iatsenko, D., P. V. E. McClintock, and A. Stefanovska, 2015, Linear and synchrosqueezed time–frequency representations revisited: Overview, standards of use, resolution, reconstruction, concentration, and algorithms: Digital Signal Processing, 42, 1–26, doi: 10.1016/j.dsp.2015.03.004.

Lesage, P., 2008, Automatic estimation of optimal autoregressive filters for the analysis of volcanic seismic activity: Natural Hazards and Earth System Sciences, 8, 369–376, doi: 10.5194/nhess-8- 369-2008.

Lesage, P., F. Glangeaud, and J. Mars, 2002, Applications of autoregressive models and time–frequency analysis to the study of volcanic tremor and long-period events: Journal of Volcanology and Geothermal Research, 114, 391–417, doi: 10.1016/S0377- 0273(01)00298-0.

Liu, W., S. Cao, and Y. Chen, 2015, Seismic time–frequency analysis via empirical wavelet transform: IEEE Geoscience and Remote Sensing Letters, 13, 28–32, doi: 10.1109/LGRS.2015.2493198.

Liu, W., S. Cao, and Y. Chen, 2016, Applications of variational mode decomposition in seismic time-frequency analysis: Geophysics, 81, V365–V378, doi: 10.1190/geo2015-0489.1.

Mallat, S., 2008, A wavelet tour of signal processing: The sparse way, 3rd ed.: Academic Press.

Marple, L., 1980, A new autoregressive spectrum analysis algorithm: IEEE Transactions on Acoustics, Speech, and Signal Processing, 28, 441–454, doi: 10.1109/TASSP.1980.1163429.

Marple, S. L., 1987, Digital spectral analysis: With applications: Prentice-Hall.

Mitrofanov, G., and V. Priimenko, 2015, Prony filtering of seismic data: Acta Geophysica, 63, 652–678, doi: 10.1515/acgeo-2015-0012.

Morf, M., B. Dickinson, T. Kailath, and A. Vieira, 1977, Efficient solution of covariance equations for linear prediction: IEEE Transactions on Acoustics, Speech, and Signal Processing, 25, 429–433, doi: 10.1109/TASSP.1977.1162989.

Oropeza, V., and M. Sacchi, 2011, Simultaneous seismic data denoising and reconstruction via multi-channel singular spectrum analysis: Geophysics, 76, V25–V32, doi: 10.1190/1.3552706.

Porsani, M. J., B. Ursin, and M. G. Silva, 2019, Signal decomposition and time-frequency representation using iterative singular spectrum analysis: Geophysical Journal International, 217, 748–765, doi: 10.1093/gji/ggz046.

Robinson, E. A., and S. Treitel, 2000, Geophysical signal analysis: Society of Exploration Geophysicists. 481 pp. doi: https://doi.org/10.1190/1.9781560802327

Rodrigues, P. C., P. G. S. E. Tuy, and R. Mahmoudvand, 2018, Randomized singular spectrum analysis for long time series: Journal of Statistical Computation and Simulation, 88, 1921–1935, doi: 10.1080/00949655.2018.1462810.

Taner, M. T., F. Koehler, and R. E. Sheriff, 1979, Complex seismic trace analysis: Geophysics, 44, 1041–1063, doi: 10.1190/1.1440994.

Tary, J. B., R. Herrera, and M. Baan, 2013, Time-varying autoregressive model for spectral analysis of microseismic experiments and long-period volcanic events: Geophysical Journal International, 196, 600–611, doi: 10.1093/gji/ggt400.

Tary, J. B., R. H. Herrera, J. Han, and M. van der Baan, 2014, Spectral estimation —What is new? What is next?: Reviews of Geophysics, 52, 723–749, doi: 10.1002/2014RG000461.

Tary, J. B., R. H. Herrera, and M. van der Baan, 2018, Analysis of time-varying signals using continuous wavelet and synchrosqueezed transforms: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376, 20170254, doi: 10.1098/rsta.2017.0254.

Torres, M. E., M. A. Colominas, G. Schlotthauer, and P. Flandrin, 2011, A complete ensemble empirical mode decomposition with adaptive noise: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4144–4147. doi: 10.1109/ICASSP.2011.5947265.

Ursin, B., and M. J. Porsani, 2021, Signal time–frequency representation and decomposition using partial fractions: Geophysical Journal International, 226, 617–626, doi: 10.1093/gji/ggab115.

Vesnaver, A., 2017, Instantaneous frequency and phase without unwrapping: Geophysics, 82, F1–F7, doi: 10.1190/geo2016-0185.1.

Wu, H.-T., G. F. Lewis, M. I. Davila, I. Daubechies, and S. W. Porges, 2016, Optimizing estimates of instantaneous heart rate from pulse wave signals with the synchrosqueezing transform: Methods of Information in Medicine, 55, 463–472, doi: 10.3414/ME16-01-0026.

DOI: http://dx.doi.org/10.22564/brjg.v40i1.2138

This work is licensed under a Creative Commons Attribution 4.0 International License.

**online**): ISSN 2764-8044

**version**a partir do v.37n.4 (2019) até o presente

**online**): ISSN 1809-4511

**version**v.15n.1 (1997) até v.37n.3 (2019)

**printed version**): ISSN 0102-261X

**Brazilian Journal of Geophysics - BrJG**

Sociedade Brasileira de Geofísica - SBGf

Av. Rio Branco 156 sala 2509

Rio de Janeiro, RJ, Brazil

Phone/Fax: +55 21 2533-0064

E-mail: editor@sbgf.org.br

Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.