Modeling of Sources in the Time Domain - Practical Example with Vertical-Vertical Controlled-Source Electromagnetic Method

Danusa Mayara de Souza, Marcos Welby Correa Silva, Victor Cezar Tocantins de Souza


The challenge in transient method modeling is, precisely, to simulate the response of the fading of the electromagnetic field (EM) and its interactions with the subsurface in the face of physical property contrasts. The study herein displays the result of the time domain modeling of the vertical-vertical controlled-source electromagnetic method (VVCSEM), written in Python, looking to analyze the responses of electromagnetic fields in different models and configurations while not requiring significant knowledge of scientific programming or financial resources for proprietary software licenses. A canonical geological model was used to analyze the field behavior. The codes were published under a permissive open-source license and made available on the Zenodo platform and GitHub repository. The VVCSEM modeling using Jupyter notebooks (Anaconda) proved accessible, efficient in detecting proposed resistive anomalies, as expected, and reliable, compared to the literature descriptions.


transient; simulation; Python; VVCSEM

Full Text:



Anaconda Software Distribution, 2017, Computer software. version 2-2.4.0. Anaconda, Inc., Nov. Web. . Barsukov, P., E.B. Fainberg, and B.A. Singer, 2007, Method for hydrocarbon reservoir mapping and apparatus for use when performing the method: WO 2007/053025 in PCT/NO2006/000372. 40 pp.

Barsukov, P., E.B. Fainberg, and B.A. Singer, 2008, Method for mapping hydrocarbon reservoirs in shallow waters and also apparatus for use practising the method: WO 2008/066389 in PCT/NO2007/000416. 36 pp.

Cass, S., 2021, Top Programming Languages 2021 Python dominates as the de facto platform for new technologies: IEEE Spectrum, August 2021.

Castillo-Reyes, O., J. De La Puente, and J.M. Cela, 2018, PETGEM: A parallel code for 3D CSEM forward modeling using edge finite elements: Computers & Geosciences, 119, 2018, 123–136. DOI: 10.1016/j.jappgeo.2021.104438.

Clemens, M., and T. Weiland, 2001, Discrete electromagnetism with the finite integration technique: Progress in Electromagnetic Research: PIER, 32, 65–87. DOI: 10.2528/PIER00080103.

Constable, S., and C.J. Weiss, 2007, Mapping thin resistors and hydrocarbons with marine EM methods: Insights from 1D modeling: Geophysics, 71, G43–G51. DOI: 10.1190/1.2187748.

Esmaili, R.B., 2021, Earth Observation Using Python: A Practical Programming Guide: AGU / Wiley. Special Publications, 75, Hoboken, NJ. 304 pp. DOI: 10.1002/9781119606925.

Flekkoy, E., K. Maloy, and T. Holten, 2009, Electromagnetic surveying can be done using both horizontal and vertical transmitters/receivers. To understand the Physics, it pays off to use an analogy with heat waves: GEOExPro, vol. 6 no. 4.

Frafjork, O., T. Holten, A. Kaffas, J. Borven, and S. Helwig, 2014, Minimizing the noise contribution in vertical electric field measurements: 76th EAGE Conference & Exhibition: Amsterdam, The Netherlands, 2014. DOI: 10.3997/2214-4609.20141247.

Gloux, B., and T. Holten, 2009, TEMP-VEL, a different EM offshore exploration approach/technology. Case example from the Norwegian sea. NGF Abstracts and Proceedings. Norsk Geologisk Forening. Norway. no. 3, 5–7.

Heagy, L.J., R. Cockett, S. Kang, G.K. Rosenkjaer, and D.W. Oldenburg, 2017, A framework for simulation and inversion in electromagnetics: Computers & Geosciences, 107, 1–19. DOI: 10.1016/j.cageo.2017.06.018.

Helwig, S., A. Kaffas, T. Holten, O. Frafjord, and K. Eide, 2013, Vertical dipole CSEM: technology advances and results from the Snøhvit field: First Break, 31, 63–68. DOI: 10.3997/1365-2397.31.4.67466. Helwig, S., W. Wood, and B. Gloux, 2019, Vertical–vertical controlled-source electromagnetic instrumentation and acquisition: Geophysical Prospecting, 67, 6, 1582–1594. DOI: 10.1111/1365-2478.12771.

Holten, T., E. Flekkoy, B. Singer, E. Blixt, A. Hanssen, and K. Maloy, 2009a, Vertical source, vertical receiver, electromagnetic technique for offshore hydrocarbon exploration: First Break, 27, 89–93. DOI: 10.3997/1365-2397.27.1299.28934.

Holten, T., D. Veiber, and E.G. Flekkoy, 2009b, Vertical Electric Time-Domain Responses from a Vertical Current Source for Offshore Hydrocarbon Exploration: 71st EAGE Conference & Exhibition: Amsterdam, The Netherlands. DOI: 10.3997/2214- 4609.201400504.

Hunziker, J., J. Thorbecke, and E. Slob, 2015, The electromagnetic response in a layered vertical transverse isotropic medium: a new look at an old problem: Geophysics, 80, 1, F1–F18. DOI: 196 Time Domain Modeling – VVCSEM Example Braz. J. Geophys., 40, 2, 2022 10.1190/geo2013-0411.1.

Key, K., 2009, 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers: Geophysics, 74, 2, F9–F20. DOI: 10.1190/1.3058434.

Key, K., and J. Ovall, 2012, A parallel goal-oriented adaptive finite element method for 2.5-D modelling: Geophysical Journal International, 186, 1, 137–154. DOI: 10.1111/j.1365-246X.2011.05025.x.

Kjerstad, J., 2010, Device for a vertical electromagnetic field component receiver: WO 2010/041959 in PCT/NO2009/000352. 22 p.

Rijo, L., 2007, Electrical Geophysics 2-D & 3-D Earth Modeling: Notas de aula: Programa de Pós-graduação em Geofísica – UFPA. Belém, Brazil. Rochlitz, R., N. Skibbe, and T. Günther, 2019, custEM: customizable finite element simulation of complex controlled-source electromagnetic data: Geophysics, 84, 2, F17–F33. DOI: 10.1190/geo2018-0208.1.

Saison, S., 2017, Electromagnetic Seabed Logging: A new tool for geoscientists. Springer, 536 pp. DOI: 10.1007/978-3-319-45355-2. Souza, D.M., M.W.C. Silva, and V.C.T.

Souza, 2022, VVCSEM repository. DOI: 10.5281/zenodo.6369599. Werthmüller, D., 2017, An open-source full 3D electromagnetic modeler for 1D VTI media in Python: empymod: Geophysics, 82, 6, WB9–WB19. DOI: 10.1190/geo2016-0626.1.

Werthmüller, D., W.A. Mulder, and E.C. Slob, 2019, emg3d: A multigrid solver for 3D electromagnetic diffusion: Journal of Open Source Software, 4, 39, 1463. DOI: 10.21105/joss.01463.

Werthmüller, D., W.A. Mulder, and E.C. Slob, 2021, Fast Fourier transformation of electromagnetic data for computationally expensive kernels: Geophysical Journal International, ggab171. DOI: 10.1093/gji/ggab171.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)


Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064

Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.

Creative Commons