A correction factor for the resistivity log in gas reservoirs with low resistivity pay zone in the Poti Formation, Parnaiba Basin, Brazil
Abstract
Keywords
Full Text:
PDFReferences
Audinno, R. T., I. P. Pratama, A. Halim, and D. P. Kusuma, 2016, Integrated Analysis of The-Low Resistivity Hydrocarbon Reservoir in the “S” Field: IPA 40th Annual Convention and Exhibition, Jakarta, 1–12.
Calonio, L. W., 2020, Influência de pirita e argilominerais nos cálculos de saturação da Fm. Poti, Bacia do Parnaíba: um estudo de caso no poço 3-PGN-5-MA: M.S. thesis, Universidade Federal Fluminense, RJ, Brazil. 160 pp.
Caputo, M. V., R. Iannuzzi, and V. M. M. Fonseca, 2005, Bacias sedimentares brasileiras: Bacia do Parnaíba: Phoenix, 81, 1–6.
Chu, W.-C., and J. Steckhan, 2011, A practical approach to determine low-resistivity pay in clastic reservoirs: SPE Annual Technical Conference and Exhibition, Denver, CO. DOI: 10.2118/147360-MS.
Clavier, C., A. Heim, and C. Scala, 1976, Effect of pyrite on resistivity and other logging measurements: SPWLA 17th Annual Logging Symposium, Ridgefield, CT, 1–34.
Clennell, M. B., M. Josh, L. Esteban, C. D. Piane, S. Schmid, M. Verrall, D. Hill, C. Woods, and B. McMullan, 2010, The influence of pyrite on rock electrical properties: A case study from NW Australian gas reservoirs: SPWLA 51st Annual Logging Symposium, Perth, Western Australia. DOI: 10.13140/2.1.4026.0483.
Díaz, R. A. R., 2012, Geoquímica do enxofre e morfologia da pirita em sedimentos do sistema de ressurgência de Cabo Frio (RJ): M.S. thesis, Universidade Federal Fluminense, RJ, Brazil. 113 pp.
Fernandes, R. F., 2011, Estudo da evolução termomecânica da Bacia do Parnaíba: Ph.D. dissertation, Universidade Federal do Rio de Janeiro, RJ, Brazil. 116 pp.
Góes, A. M., 1995, Formação Poti (Carbonífero inferior) da Bacia do Parnaíba: Ph.D. dissertation, Universidade de São Paulo, SP, Brazil. 204 pp.
Góes, A. M. O., and F. J. Feijó, 1994, Bacia do Parnaíba: Boletim de Geociências da Petrobras, 1, 57–68.
Hamada, G. M., and M. N. Al-Awad, 2002, Evaluation of low resistivity beds using nuclear magnetic resonance log. Eng. Sci. Technol., 99–105. DOI: 10.4197/Eng.14-1.3.
Holmes, M., A. Holmes, and D. Holmes, 2013, A Petrophysical Model to Quantify Pyrite Volumes and to Adjust Resistivity Response to Account for Pyrite Conductivity: 2013 AAPG ACE, Pittsburgh, PA, 19–22.
Klaja, J., and L. Dudek, 2016, Geological interpretation of spectral gamma ray (SGR) logging in selected boreholes: Nafta-Gaz, 72, 1, 3–14. DOI: 10.18668/NG2016.01.01.
Klimentos, T., 1995, Pyrite volume estimation by well log analysis and petrophysical studies: SPWLA, 36, 6, SPWLA-1995-v36n6a1.
Lalanne, B. J., and G. J. Massonnat, 2004, Impacts of petrophysical cut-offs in reservoir models: SPE Annual Technical Conference and Exhibition, Houston, TX, 26–29. SPE-91040-MS. DOI: 10.2118/91040-MS.
Campos, C. W. M., 1964, Estratigrafia das bacias paleozoica e cretácea do Maranhão: Bol. Técnico da Petrobras, 7, 2, 137–164.
Menchio, B., and M. Yebra, 2020, The importance of core-log integration in laminated reservoirs with complex mineralogy: case study of Longá Formation, a new exploratory play in the Parnaíba Basin, Brazil: SPWLA 61st Annual Logging Symposium, June 24–July 29, Virtual Online Webinar. DOI: 10.30632/SPWLA-5007.
Miranda, F. S., 2014, Caracterização geológica da Formação Pimenteiras como potencial reservatório do tipo shale-gas (Devoniano da Bacia do Parnaíba): Ph.D. dissertation, Universidade Federal do Rio de Janeiro, Brazil. 257 pp.
Miranda, F. S., A. L. Vettorazzi, P. R. Da Cruz Cunha, F. B. Aragão, D. Michelon, J. L. Caldeira, E. Porsche, C. Martins, R. B. Ribeiro, A. F. Vilela, J. R. Corrêa, L. S. Silveira, and K. Andreola, 2018, Atypical igneous-sedimentary petroleum systems of the Parnaíba Basin, Brazil: seismic, well logs and cores: Geol. Soc. Lond., Special Publications, 472, 1, 341–360. DOI: 10.1144/SP472.15.
Moradzadeh, A., and M. R. Bakhtiari, 2011, Methods of water saturation estimation: Historical perspective: JPGE, 3, 2, 45–53.
Morse, J. W., 1994, Interactions of trace metals with authigenic sulfide minerals: implications for their bioavailability: Marine Chemistry, 46, 1–2, 1–6. DOI: 10.1016/0304-4203(94)90040-X.
Pereira, R. M., 2020, Interpretação paleodeposicional da Formação Cabeças a partir de dados gamaespectrais de poços da área do Parque dos Gaviões, Bacia do Parnaíba: M.S. thesis, Universidade Federal Fluminense, RJ, Brazil. 122 pp.
Pillai, P., Boyle, K., Toumelin, E., and Kho, D., 2015, Advanced Formation Logging: A case study of revealing the true potential of a gas Reservoir: SPWLA 56th Annual Logging Symposium, Long Beach, CA, 18–22.
Pratama, E., M. Suhaili Ismail, and S. Ridha, 2017, An integrated workflow to characterize and evaluate low resistivity pay and its phenomenon in a sandstone reservoir: JGE, 14, 3, 513–519. DOI: 10.1088/1742-2140/aa5efb.
Quirein, J. A., J. S. Gardner, and J. T. Watson, 1982, Combined Natural Gamma Ray Spectral/Litho-Density Measurements Applied to Clay Mineral Identification: AAPG Bulletin, 66, 9, 1446–1446.
Rickard, D., 1997, Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The rate equation: GCA, 61, 1, 115–134. DOI: 10.1016/S0016-7037(96)00321-3.
Rodrigues, R., 1995, A geoquímica orgânica na Bacia do Parnaíba: Ph.D. dissertation, Universidade Federal do Rio Grande do Sul, RS, Brazil. 252 pp.
Sageman, B. B., A. E. Murphy, J. P. Werne, C. A. Ver Straeten, D. J. Hollander, and T. W. Lyons, 2003, A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle–Upper Devonian, Appalachian basin: Chem. Geol., 195, 1-4, 229–273. DOI: 10.1016/S0009-2541(02)00397-2.
Sneider, R. M. 2003, Worldwide examples of low resistivity pay, in: Sternbach, C. A., M. W. Downey, and G. M. Friedman, eds., Discoverers of the 20th Century: Perfecting the Search AAPG Special Publication, Houston, 47–59.
Tew, A. T., 2015, Impact of Conductive Minerals on Measurements of Electrical Resistivity: Ph.D. dissertation, Stanford University, 151 pp.
Valentini, S., D. Bernorio, M. Grandis, A. Mazzacca, A. Serrao, and L. Visconti, 2017, Saturation height modelling: an integrated methodology to define a consistent saturation profile: Offshore Mediterranean Conference and Exhibition, Ravenna, Italy, 29–31.
Vaz, P. T., N. G. A. M. Rezende, J. R. Wanderley Filho, and W. S. Travassos, 2007, Bacia do Parnaíba: Boletim de Geociências da Petrobras, 15, 2, 253–263.
Vettorazzi, A. L. S., 2012, Caracterização sedimentológica dos arenitos da Formação Cabeças (Devoniano) na borda leste da Bacia do Parnaíba: M.S. thesis, Universidade Federal do Rio de Janeiro, RJ, Brazil. 103 pp.
Wilkin, R. T., H. L. Barnes, and S. L. Brantley, 1996, The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions: GCA, 60, 20, 3897–3912. DOI: 10.1016/0016-7037(96)00209-8.
DOI: http://dx.doi.org/10.22564/brjg.v40i2.2162
This work is licensed under a Creative Commons Attribution 4.0 International License.
a partir do v.37n.4 (2019) até o presente
v.15n.1 (1997) até v.37n.3 (2019)
Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br
Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.