Simultaneous Sparse Deconvolution

Erick Talarico, Matheus Sobreira, Andre Gomes, Carlos Cunha Filho

Abstract


Increasing seismic resolution has been long pursued by the geophysical community, serving, among other applications, for more detailed interpretation of seismic clinoforms, better seismic inversion and quantitative interpretation. Sparse deconvolution methods play central role in this pursuit. However, although sparse methods have performed well for single seismic stack or acoustic inversion tasks, their application for multi-stack seismic volumes and consequent use in elastic inversion is still a challenging and ongoing research topic. The challenge is to obtain reflectivity volumes with high correlation between them. In this study, we present a new method to perform simultaneous sparse deconvolution (SSD) in a group of seismic volumes associated with different reflection angles. The proposed algorithm enforces co-localization of the spikes on the estimated reflectivity traces and additionally allows user control of the sparsity via hyperparameters. The method is validated in both synthetic and real datasets proving its co-localization capability and resulting in higher correlations between the reflectivity volumes, when compared to independent sparse deconvolution (ISD) of the seismic stacks. The resulting reflectivity volumes are, henceforth, better suited for downstream tasks such as high resolution amplitude versus angle (AVA) analysis, or input for high resolution elastic inversions.

Keywords


partial stacks; amplitude versus angle; sparsity; deconvolution

Full Text:

PDF

References


Bishop, C., 2006, Pattern Recognition and Machine Learning: Springer, New York, 738 pp. ISBN-10: 0387310738.

Buland, A., and H. Omre, 2003, Bayesian linearized AVO inversion: Geophysics, 68, 1, 185–198, doi: 10.1190/1.1543206

Cunha, C. A., L. T. Silva, N.S.M. Cruz, A. Damasceno, A. Pimentel, T. S. Oliveira, and A. Pimentel, 2019, High Resolution Impedance Inversion: Brazilian Journal of Geophysics, 37, 4, 461–469, doi: 10.22564/rbgf.v37i4.2022.

Hargreaves, N., S. Treitel, and M. Smith, 2013, Frequency extension, resolution, and sparse inversion: SEG Technical Program Expanded Abstracts 2013, 3345–3349, doi: 10.1190/segam2013-0782.1

Lyche, T., 2020, The Kronecker Product, in: Numerical Linear Algebra and Matrix Factorizations. Texts in Computational Science and Engineering, 22, Springer, Cham, 225–236, doi: 10.1007/978-3-030-36468-7_10.

Kazemi, N., and M. D. Sacchi, 2014, Sparse multichannel blind deconvolution: Geophysics, 79, 5, V143–V152, doi: 10.1190/geo2013-0465.1.

Rosa, A. L. R., 2018, The seismic signal and its meaning: Society of Exploration Geophysics, Geophysical References Series, 23, 788 pp, doi: 10.1190/1.9781560803348.

Valentine, A. and M. Sambridge, 2018, Optimal regularization for a class of linear inverse problem: Geophysical Journal International, 215, 2, 1003–1021, doi: 10.1093/gji/ggy303.

Ji, Y., H. Hu, Z. Lin, K. Zhang, and H. Zhong, 2020, The preconditioned ARD-based AVA inversion method for P-impedance and S-impedance: SEG Technical Program Expanded Abstracts, 355–359, doi: 10.1190/segam2020-3415458.1

Sheriff, R. E., 1991, Encyclopedic Dictionary of Exploration Geophysics, 3rd ed., SEG, 376 pp.

Xi, Y., X. Yin, and Z. Zong, 2018, AVO multi-trace group sparse inversion: SEG Technical Program Expanded Abstracts, 481–485, doi: 10.1190/segam2018-2995959.1




DOI: http://dx.doi.org/10.22564/brjg.v40i2.2164

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.





 

>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)

 

Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br

Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.

Creative Commons