Borehole Effects on Coaxial and Coplanar Logs of Triaxial Tools in Laminated Formations with Anisotropic Shale Host

Paulo Roberto de Carvalho, Cicero Roberto Teixeira Regis, Valdelírio Silva e Silva

Abstract


This paper studies the borehole effect in the triaxial induction logs within sand-shale laminated models with isotropic and anisotropic shale laminae with transverse isotropy. This study compares results from a 3D Vector Finite Element program (with borehole) and a 1D-Analytic code (no borehole). In comparison with the coaxial configuration, the vertical coplanar logs show a stronger horning effect in front of the laminated pack boundaries; a more intense skin effect to the conductivity media; and a more prominent oscillation within the laminated formation. In addition, feature changes (angular or smooth shapes) occur on the coaxial and coplanar responses as the dipping angle varies. The sensitivities of the logs to the anisotropy and borehole are opposite, i.e., for small angles where the coaxial is least sensitive, the coplanar is most sensitive, and for large angles where the coaxial is most sensitive, the coplanar is least sensitive. The main physical cause of these opposite behaviors to the anisotropy and borehole effect is the same: the weight of the horizontal magnetic component of the horizontal dipole contribution on the coaxial and coplanar dipping logs since it is the only one of the four magnetic field components that has anisotropy sensitivity and strongest skin effect.

Keywords


borehole effects; triaxial induction tool; laminated sand-shale formations; electrical anisotropy; anisotropic shale host

Full Text:

PDF

References


Anderson, B., T. Barber, R. Bastia, J. B. Clauvaud, B. Coffin, M. Das, R. Hayden, T. Klimentos, C. C. Minh, and S. Williams, 2008, Triaxial induction – a new angle for an old measurement: Oilfield Review, 20, 64–84.

Anderson, B., S. Bonner, M. G. Lüling, and R. Rosthal, 1992, Response of 2-MHz LWD resistivity and wireline induction tools in dipping beds and laminated formations: The Log Analyst, 33, 461–475.

Anderson, B. I., T. Barber, and T. M. Habashy, 2002, The interpretation and inversion of fully triaxial induction data; a sensitivity study: SPWLA 43rd Annual Logging Symposium, Oiso, Japan, Soc. Prof. Well Log. Analysts, Paper O.

Bittar, M., H.-H. M. Wu, J. Ma, L. Pan, Y. Fan, M. Griffing, and C. Lozinsky, 2021, First LWD co-located antenna sensors for real-time anisotropy and dip angle determination, yielding better look-ahead detection: Petrophysics - The SPWLA Journal of Formation Evaluation and Reservoir Description, 62, 296–310, doi: 10.30632/PJV62N3-2021a4.

Carvalho, P. R. d., W. G. dos Santos, and C. Régis, 2010, Fundamentals of coaxial and coplanar coil arrays in induction tools: Brazilian Journal of Geophysics, 28, 19–36, doi: 10.1590/S0102- 261X2010000100002.

Carvalho, P. R. d., C. R. T. Régis, and V. da Silva e Silva, 2018, Effects of the deviation angle of the borehole in the induction anisotropy logs: Brazilian Journal of Geophysics, 36, 291–399, doi: 10.22564/rbgf.v36i4.1964.

Clavaud, J.-B., R. Nelson, and U. K. Guru, 2005, Field example of enhanced hydrocarbon estimation in thinly laminated formation with a triaxial array induction tool: A laminated sand-shale analysis with anisotropic shale: SPWLA 46th Annual Logging Symposium, New Orleans, Louisiana, USA, Soc. Prof. Well Log. Analysts, Paper WW.

Clegg, N., A. Duriez, V. Kiselev, S. Sinha, T. Parker, F. Jakobsen, E. Jakobsen, D. Marchant, and C. Schwarzbach, 2021, Detection of offset wells ahead of and around an LWD ultra-deep electromagnetic tool: Presented at the SPWLA 62nd Annual Logging Symposium, Virtual Event, Soc. Prof. Well Log. Analysts. doi: 10.30632/SPWLA-2021-0039.

Gomes, R. M., P. S. Denicol, A. M. V. da Cunha, M. S. de Souza, B. F. Kriegshäuser, C. J. Payne, and A. Santos, 2002, Using multicomponent induction log data to enhance formation evaluation in deepwater reservoirs from Campus Basin, offshore Brazil: SPWLA 43rd Annual Logging Symposium, Oiso, Japan, Soc. Prof. Well Log. Analysts–SPWLA, Paper N.

Jin, J.-M., 2015, The finite element method in electromagnetics, 3rd ed.: Wiley, 800 pp. Kaufman, A. A., and G. Ytskovich, 2017, Basic principles of induction logging – Electromagnetic methods in borehole geophysics: Elsevier, 491 pp.

Key, K., 2012, Is the fast Hankel transform faster than quadrature?: Geophysics, 77, F21–F30, doi: 10.1190/geo2011-0237.1.

Kriegshäuser, B., O. Fanini, S. Forgang, G. Itskovich, M. Rabinovich, L. Tabarovsky, L. Yu, M. Epov, P. Gupta, and J. v. d. Horst, 2000, A new multicomponent induction logging tool to resolve anisotropic formations: Presented at the SPWLA 41st Annual Logging Symposium, Dallas, Texas, USA., Society of Petrophysicists and Well-Log Analysts.

Moinfar, A., C. Torres-Verdin, R. K. Mallan, and R. Angeles, 2010, Time-lapse variations of multicomponent electrical resistivity measurements acquired in high-angle wells: Petrophysics, 51, 408–427. Moran, J. H., and K. S. Kunz, 1962, Basic theory of induction logging and application to study of two-coil sondes: Geophysics, 27, 829–858, doi: 10.1190/1.1439108.

Omeragic, D., Z. Bayraktar, M. Thiel, T. Habashy, P. Wu, F. Shray, and V. H. G. Antezana, 2015, Triaxial induction interpretation in horizontal wells: Mapping boundaries, and characterizing anisotropy and fractures: SPWLA 56th Annual Logging Symposium, Long Beach, California, USA., Society of Petrophysicists and Well-Log Analysts, Paper I.

Régis, C., P. R. de Carvalho, and V. da Silva e Silva, 2020, A new look at the causes of “polarization” horns in electromagnetic well logging: Geophysics, 85, D233–D243, doi: 10.1190/geo2020-0163.1.

Schenk, O., K. Gärtner, W. Fichtner, and A. Stricker, 2001, Pardiso: a high-performance serial and parallel sparse linear solver in semiconductor device simulation: Future Generation Computer Systems, 18, 69 – 78, doi: 10.1016/S0167-739X(00)00076-5. (I. High Performance Numerical Methods and Applications. II. Performance Data Mining: Automated Diagnosis, Adaption, and Optimization).

Si, H., 2015, Tetgen, a Delaunay-based quality tetrahedral mesh generator: ACM Trans. Math. Softw., 41, 1–36, doi: 10.1145/2629697.

Ward, S. H., and G.W. Hohmann, 1987, Electromagnetic theory for geophysical applications, in Nabighian, M. N., ed., Electromagnetic Methods in Applied Geophysics, Vol. 1, Theory: SEG, volume 1 of Investigations in Geophysics, 130–311. DOI: 10.1190/1.9781560802631.ch4.

Waxman, M., and L. Smits, 1968, Electrical Conductivities in Oil-Bearing Shaly Sands: Society of Petroleum Engineers Journal, 8, 107–122, doi: 10.2118/1863-A.

Zhang, Z., B. Yu, and C. Liu, 2012, Investigation of effects of large dielectric constants on triaxial induction logs: Applied Mathematics, 3, 1811–1817, doi: 10.4236/am.2012.331246.




DOI: http://dx.doi.org/10.22564/brjg.v40i3.2170

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.







>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)

 

Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br

 

Creative Commons