Borehole Effects on Coaxial and Coplanar Logs of Triaxial Tools in Laminated Formations with Anisotropic Shale Host
Abstract
Keywords
Full Text:
PDFReferences
Anderson, B., T. Barber, R. Bastia, J. B. Clauvaud, B. Coffin, M. Das, R. Hayden, T. Klimentos, C. C. Minh, and S. Williams, 2008, Triaxial induction – a new angle for an old measurement: Oilfield Review, 20, 64–84.
Anderson, B., S. Bonner, M. G. Lüling, and R. Rosthal, 1992, Response of 2-MHz LWD resistivity and wireline induction tools in dipping beds and laminated formations: The Log Analyst, 33, 461–475.
Anderson, B. I., T. Barber, and T. M. Habashy, 2002, The interpretation and inversion of fully triaxial induction data; a sensitivity study: SPWLA 43rd Annual Logging Symposium, Oiso, Japan, Soc. Prof. Well Log. Analysts, Paper O.
Bittar, M., H.-H. M. Wu, J. Ma, L. Pan, Y. Fan, M. Griffing, and C. Lozinsky, 2021, First LWD co-located antenna sensors for real-time anisotropy and dip angle determination, yielding better look-ahead detection: Petrophysics - The SPWLA Journal of Formation Evaluation and Reservoir Description, 62, 296–310, doi: 10.30632/PJV62N3-2021a4.
Carvalho, P. R. d., W. G. dos Santos, and C. Régis, 2010, Fundamentals of coaxial and coplanar coil arrays in induction tools: Brazilian Journal of Geophysics, 28, 19–36, doi: 10.1590/S0102- 261X2010000100002.
Carvalho, P. R. d., C. R. T. Régis, and V. da Silva e Silva, 2018, Effects of the deviation angle of the borehole in the induction anisotropy logs: Brazilian Journal of Geophysics, 36, 291–399, doi: 10.22564/rbgf.v36i4.1964.
Clavaud, J.-B., R. Nelson, and U. K. Guru, 2005, Field example of enhanced hydrocarbon estimation in thinly laminated formation with a triaxial array induction tool: A laminated sand-shale analysis with anisotropic shale: SPWLA 46th Annual Logging Symposium, New Orleans, Louisiana, USA, Soc. Prof. Well Log. Analysts, Paper WW.
Clegg, N., A. Duriez, V. Kiselev, S. Sinha, T. Parker, F. Jakobsen, E. Jakobsen, D. Marchant, and C. Schwarzbach, 2021, Detection of offset wells ahead of and around an LWD ultra-deep electromagnetic tool: Presented at the SPWLA 62nd Annual Logging Symposium, Virtual Event, Soc. Prof. Well Log. Analysts. doi: 10.30632/SPWLA-2021-0039.
Gomes, R. M., P. S. Denicol, A. M. V. da Cunha, M. S. de Souza, B. F. Kriegshäuser, C. J. Payne, and A. Santos, 2002, Using multicomponent induction log data to enhance formation evaluation in deepwater reservoirs from Campus Basin, offshore Brazil: SPWLA 43rd Annual Logging Symposium, Oiso, Japan, Soc. Prof. Well Log. Analysts–SPWLA, Paper N.
Jin, J.-M., 2015, The finite element method in electromagnetics, 3rd ed.: Wiley, 800 pp. Kaufman, A. A., and G. Ytskovich, 2017, Basic principles of induction logging – Electromagnetic methods in borehole geophysics: Elsevier, 491 pp.
Key, K., 2012, Is the fast Hankel transform faster than quadrature?: Geophysics, 77, F21–F30, doi: 10.1190/geo2011-0237.1.
Kriegshäuser, B., O. Fanini, S. Forgang, G. Itskovich, M. Rabinovich, L. Tabarovsky, L. Yu, M. Epov, P. Gupta, and J. v. d. Horst, 2000, A new multicomponent induction logging tool to resolve anisotropic formations: Presented at the SPWLA 41st Annual Logging Symposium, Dallas, Texas, USA., Society of Petrophysicists and Well-Log Analysts.
Moinfar, A., C. Torres-Verdin, R. K. Mallan, and R. Angeles, 2010, Time-lapse variations of multicomponent electrical resistivity measurements acquired in high-angle wells: Petrophysics, 51, 408–427. Moran, J. H., and K. S. Kunz, 1962, Basic theory of induction logging and application to study of two-coil sondes: Geophysics, 27, 829–858, doi: 10.1190/1.1439108.
Omeragic, D., Z. Bayraktar, M. Thiel, T. Habashy, P. Wu, F. Shray, and V. H. G. Antezana, 2015, Triaxial induction interpretation in horizontal wells: Mapping boundaries, and characterizing anisotropy and fractures: SPWLA 56th Annual Logging Symposium, Long Beach, California, USA., Society of Petrophysicists and Well-Log Analysts, Paper I.
Régis, C., P. R. de Carvalho, and V. da Silva e Silva, 2020, A new look at the causes of “polarization” horns in electromagnetic well logging: Geophysics, 85, D233–D243, doi: 10.1190/geo2020-0163.1.
Schenk, O., K. Gärtner, W. Fichtner, and A. Stricker, 2001, Pardiso: a high-performance serial and parallel sparse linear solver in semiconductor device simulation: Future Generation Computer Systems, 18, 69 – 78, doi: 10.1016/S0167-739X(00)00076-5. (I. High Performance Numerical Methods and Applications. II. Performance Data Mining: Automated Diagnosis, Adaption, and Optimization).
Si, H., 2015, Tetgen, a Delaunay-based quality tetrahedral mesh generator: ACM Trans. Math. Softw., 41, 1–36, doi: 10.1145/2629697.
Ward, S. H., and G.W. Hohmann, 1987, Electromagnetic theory for geophysical applications, in Nabighian, M. N., ed., Electromagnetic Methods in Applied Geophysics, Vol. 1, Theory: SEG, volume 1 of Investigations in Geophysics, 130–311. DOI: 10.1190/1.9781560802631.ch4.
Waxman, M., and L. Smits, 1968, Electrical Conductivities in Oil-Bearing Shaly Sands: Society of Petroleum Engineers Journal, 8, 107–122, doi: 10.2118/1863-A.
Zhang, Z., B. Yu, and C. Liu, 2012, Investigation of effects of large dielectric constants on triaxial induction logs: Applied Mathematics, 3, 1811–1817, doi: 10.4236/am.2012.331246.
DOI: http://dx.doi.org/10.22564/brjg.v40i3.2170
This work is licensed under a Creative Commons Attribution 4.0 International License.
a partir do v.37n.4 (2019) até o presente
v.15n.1 (1997) até v.37n.3 (2019)
Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br
Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.