Interpretation of magnetic anomaly profiles using a decomposition in Hilbert transform pairs

Saulo Pomponet Oliveira, Jeferson de Souza, Luis Gustavo de Castro, Francisco José Fonseca Ferreira

Abstract


ABSTRACT. We propose a simple transformation to aid the interpretation of magnetic anomalies generated by linear structures. The profile of such anomalies perpendicular to the strike can be decomposed into two signals, one symmetric and the other antisymmetric concerning the center of the source. The symmetric component serves as input data to various depth estimation techniques that often assume the anomaly is reduced to the pole. We use the fact that these components form a Hilbert transform pair to transform a skewed anomaly profile into a symmetric one. Unlike in previous works that rely on the decomposition into even and odd functions, the profile does not need to be shifted to the source's center of symmetry or limited to one isolated anomaly. Multiple effective magnetization directions presented by different dikes are modeled by a function representing the different local effective dip angles. We validate the method with synthetic data and ground magnetic survey data from a dike swarm at Ponta Grossa Arch, southern Brazil. We also illustrate the usefulness of reconstructed anomalies for depth estimation methods. The results also show that the method can handle interfering sources with distinct effective magnetization directions.


Keywords


potential methods; magnetics; Hilbert transform; remanent magnetization

Full Text:

PDF

References


Bastani, M., and L. B. Pedersen, 2001, Automatic interpretation of magnetic dike parameters using the analytical signal technique: Geophysics, 66, 551–561, doi: 10.1190/1.1444946.

Bhimasankaram, V. L. S., N. L. Mohan, and S. V. S. Rao, 1978, Interpretation of magnetic anomalies of dikes using Fourier transforms: Geoexploration, 16, 259¬–266, doi: 10.1016/0016-7142(78)90015-7.

Castro, L. G., F. J. F. Ferreira, and R. J. Angulo, 2008, Modelo gravimétrico-magnético do gráben de Paranaguá- PR, Brasil: Brazilian Journal of Geophysics, 26, 273–292, doi: 10.1590/S0102-261X2008000300002.

Cavalcante, F. L., C. A. Mendonça, U. Ofterdinger, and O. A. de Souza Filho, 2020, Well productivity in the Ponta Grossa dike swarm, Brazil: An integrated study with magnetic data inversion and clustering analysis of model solutions: Journal of Hydrology, 588, 125079, doi: 10.1016/j.jhydrol.2020.125079.

Cooper, G. R. J., 2014, Reducing the dependence of the analytic signal amplitude of aeromagnetic data on the source vector direction: Geophysics, 79, J55–J60, doi: 10.1190/geo2013-0319.1.

Cooper, G. R. J., 2015, Using the analytic signal amplitude to determine the location and depth of thin dikes from magnetic data: Geophysics, 80, J1–J6, doi: 10.1190/geo2014-0061.1.

Cooper, G. R. J., and D. R. Cowan, 2006, Enhancing potential field data using filters based on the local phase: Computers & Geosciences, 32, 1585–1591, doi: 10.1016/j.cageo.2006.02.016.

Dannemiller, N., and Y. Li, 2006, A new method for determination of magnetization direction: Geophysics, 71, L69–L73, doi: 10.1190/1.2356116.

de Souza, J., and F. J. F. Ferreira, 2012, On the use of derivatives for interpreting magnetic anomalies due to dyke-like bodies: Qualitative and quantitative analysis, in Istanbul 2012 – International Geophysical Conference and Oil & Gas Exhibition: Society of Exploration Geophysicists, 1–4. doi: 10.1190/IST092012- 001.157.

de Souza, J., S. P. Oliveira, and F. J. F. Ferreira, 2020, Using parity decomposition for interpreting magnetic anomalies from dikes having arbitrary dip angles, induced and remanent magnetization: Geophysics, 85, J51–J58, doi: 10.1190/GEO2019-0225.1.

Debeglia, N., and J. Corpel, 1997, Automatic 3-D interpretation of potential field data using analytic signal derivatives: Geophysics, 62, 87–96, doi: 10.1190/1.1444149.

Fedi, M., and G. Florio, 2001, Detection of potential fields source boundaries by enhanced horizontal derivative method: Geophysical Prospecting, 49, 40–58, doi: 10.1046/j.1365-2478.2001.00235.x.

Ferreira, F. J. F., 1982, Integração de dados aeromagnéticos e geológicos: configuração e evolução tectônica do Arco de Ponta Grossa: Master's thesis, University of São Paulo, SP, Brazil, doi: 10.11606/D.44.1983.tde-14082013-161535.

Gomes, C. B., E. Ruberti, P. Comin-Chiaramonti, and R. G. Azzone, 2011, Alkaline magmatism in the Ponta Grossa Arch, SE Brazil: a review: Journal of South American Earth Sciences, 32, 152–168, doi: 10.1016/j.jsames.2011.05.003.

Hutchison, R. D., 1958, Magnetic analysis by logarithmic curves: Geophysics, 23, 749–769, doi: 10.1190/1.1438525.

Kara, I., O. T. Bal, A. B. Tekkeli, and G. Karcio§lu, 2017, A different method for interpretation of magnetic anomalies due to 2-D dipping dikes: Acta Geophysica, 65, 237–242, doi: 10.1007/s11600-017-0019-8.

Lessa, G. C., R. J. Angulo, P. C. Giannini, and A. D. de Araujo, 2000, Stratigraphy and Holocene evolution of a regressive barrier in south Brazil: Marine Geology, 165, 87–108, doi: 10.1016/S0025-3227(99)00130-9.

Louro, V. H. A., A. P. Negrão, L. G. Castro, and F. J. F. Ferreira, 2019, Canoas geophysical anomaly: A possible alkaline body or unusual anomaly caused by ma c dykes in the Ponta Grossa Arch, Brazil?: Journal of Applied Geophysics, 170, 103857, doi: 10.1016/j.jappgeo.2019.103857.

McGrath, P. H., and P. J. Hood, 1970, The dipping dike case: A computer curve-matching method of magnetic interpretation: Geophysics, 35, 831–848, doi: 10.1190/1.1440132.

Mohan, N. L., N. Sundararajan, and S. V. Seshagiri Rao, 1982, Interpretation of some two-dimensional magnetic bodies using Hilbert transforms: Geophysics, 47, 376–387, doi: 10.1190/1.1441342.

Nabighian, M. N., 1972, The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation: Geophysics, 37, 507–517, doi: 10.1190/1.1440276.

Naudy, H., 1971, Automatic determination of depth on aeromagnetic profiles: Geophysics, 36, 717–722, doi: 10.1190/1.1440207.

Oliveira, S. P., F. J. F. Ferreira, and J. de Souza, 2017, EdgeDetectPFI: an algorithm for automatic edge detection in potential field anomaly images application to dike-like magnetic structures: Computers & Geosciences, 103, 80–91, doi: 10.1016/j.cageo.2017.02.006.

Paine, J., M. Haederle, and M. Flis, 2001, Using transformed TMI data to invert for remanently magnetised bodies: Exploration Geophysics, 32, 238–242, doi: 10.1071/EG01238.

Phillips, J. D., R. O. Hansen, and R. J. Blakely, 2007, The use of curvature in potential-field interpretation: Exploration Geophysics, 38, 111–119, doi: 10.1071/EG07014.

Pilkington, M., and M. Beiki, 2013, Mitigating remanent magnetization effects in magnetic data using the normalized source strength: Geophysics, 78, J25–J32, doi: 10.1190/GEO2012-0225.1.

Powell, D. W., 1967, Fitting observed profiles to a magnetized dyke or fault-step model: Geophysical Prospecting, 15, 208–220, doi: 10.1111/j.1365-2478.1967.tb01784.x.

Ram Babu, H. V., and D. Atchuta Rao, 1991, Application of the Hilbert transform for gravity and magnetic interpretation: Pure and Applied Geophysics, 135, 589–599, doi: 10.1007/BF01772408.

Rao, B. S. R., and I. V. R. Murthy, 1967, Remanent magnetism of dykes and continental drift: Pure and Applied Geophysics, 68, 124–130, doi: 10.1007/BF00874890.

Reid, A. B., J. M. Allsop, H. Granser, A. J. Millett, and I. W. Somerton, 1990, Magnetic interpretation in three dimensions using Euler deconvolution: Geophysics, 55, 80–91, doi: 10.1190/1.1442774.

Roest, W. R., J. Verhoef, and M. Pilkington, 1992, Magnetic interpretation using the 3-D analytic signal: Geophysics, 57, 116–125, doi: 10.1190/1.1443174.

Salem, A., S. Williams, J. D. Fairhead, D. Ravat, and R. Smith, 2007, Tilt-depth method: A simple depth estimation method using first-order magnetic derivatives: The Leading Edge, 26, 1502–1505, doi: 10.1190/1.2821934.

Shuey, R. T., 1972, Application of Hilbert transforms to magnetic profiles: Geophysics, 37, 1043–1045, doi: 10.1190/1.1440313.

Strugale, M., S. P. Rostirolla, F. Mancini, C. V. Portela Filho, F. J. F. Ferreira, and R. C. de Freitas, 2007, Structural framework and Mesozoic–Cenozoic evolution of Ponta Grossa Arch, Paraná Basin, southern Brazil: Journal of South American Earth Sciences, 24, 203–227, doi: 10.1016/j.jsames.2007.05.003.

Thompson, D. T., 1982, EULDPH: A new technique for making computer-assisted depth estimates from magnetic data: Geophysics, 47, 31–37, doi: 10.1190/1.1441278.

Weihermann, J. D., F. J. F. Ferreira, S. P. Oliveira, L. F. Cury, and J. de Souza, 2018, Magnetic interpretation of the Paranaguá terrane, southern Brazil by signum transform: Journal of Applied Geophysics, 154, 116–127, doi: 10.1016/j.jappgeo.2018.05.001.




DOI: http://dx.doi.org/10.22564/brjg.v40i4.2185

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.





 

>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)

 

Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br

Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.

Creative Commons