Rank-constrained seismic data interpolation and denoising
Abstract
Rank-constrained seismic data interpolation methods have been used to cope with spatial sampling deficiencies, but some fundamental aspects are often neglected. Understanding their underlying features is the first step for developing new solutions to overcome existing limitations. We intend to provide an intuitive description regarding low-rank strategies using the similarities between irregular samplings and noise in terms of their eigenimage representation. The interpretation of data recovery as iterative denoising helps to clarify how the traces are retrieved and the role of the rank. To emphasize either signal recovery or denoising along with the iterations, we explore non-linear versions of the decreasing weighting factor that drives the reinsertion of original samples. This type of weighting factor shows superior denoising results when raised to an integer power. Simple synthetic numerical examples illustrate the mechanics of low-rank procedures and their responses to different parameters. We also show 3D field data examples from a land survey to demonstrate the robustness of reduced-rank approaches.
Keywords
Full Text:
PDFReferences
Abma, R.; Kabir, N. Comparisons of interpolation methods. The Leading Edge 2005, 24, 984–989. 10.1190/1.2112371.
Abma, R.; Kabir, N. 3D interpolation of irregular data with a POCS algorithm. Geophysics 2006, 71, E91– E97. 10.1190/1.2356088.
Canales, L.L.; Lu, L. 3-D trace interpolation in the f-x-p domain. 63rd Annual Int. Meeting, SEG, Expanded Abstracts 1993, pp. 1174–1176. 10.1190/1.1822326.
Carozzi, F.; Sacchi, M.D. Robust tensor-completion algorithm for 5D seismic-data reconstruction. Geophysics 2019, 84, V97–V109. 10.1190/geo2018-0109.1.
Carozzi, F.; Sacchi, M.D. Interpolated multichannel singular spectrum analysis: A reconstruction method that honors true trace coordinates. Geophysics 2021, 86, V55–V70. 10.1190/geo2019-0806.1.
Cavalcante, Q.; Porsani, M.J. Prestack seismic data reconstruction and denoising by orientationdependent tensor decomposition. Geophysics 2021, 86, V107–V117. 10.1190/geo-2020-0070.1.
Cavalcante, Q.; Porsani, M.J. Low-rank seismic data reconstruction and denoising by CUR matrix decompositions. Geophysical Prospecting 2022, 70, 362–376. 10.1111/1365-2478.13163.
Donoho, D.L. Compressed sensing. IEEE Transactions on Information Theory 2006, 52, 1289–1306. 10.1109/TIT.2006.871582.
Duijndam, A.J.W.; Schonewille, M.A.; Hindriks, C.O.H. Reconstruction of band-limited signals, irregularly sampled along one spatial direction. Geophysics 1999, 64, 524–538. 10.1190/1.1444559.
Eckart, C.; Young, G. The approximation of one matrix by another of lower rank. Psychometrika 1936, 1, 211–218. 10.1007/BF02288367.
Ely, G.; Aeron, S.; Hao, N.; Kilmer, M.E. 5D seismic data completion and denoising using a novel class of tensor decompositions. Geophysics 2015, 80, V83–V95. 10.1190/geo2014-0467.1.
Fomel, S. Seismic reflection data interpolation with differential offset and shot continuation. Geophysics 2003, 68, 1–12. 10.1190/1.1567243.
Ford, W. Numerical linear algebra with applications: using MATLAB.; Academic Press: London, 2014.
Freire, S.L.M.; Ulrych, T.J. Application of singular value decomposition to vertical seismic profiling. Geophysics 1988, 53, 778–785. 10.1190/1.1442513.
Gao, J.; Sacchi, M.D.; Chen, X. A fast reduced-rank interpolation method for prestack seismic volumes that depend on four spatial dimensions. Geophysics 2013, 78, V21–V30. 10.1190/geo2012-0038.1.
Gao, J.; Stanton, A.; Sacchi, M.D. Parallel matrix factorization algorithm and its application to 5D seismic reconstruction and denoising. Geophysics 2015, 80, V173–V187. 10.1190/geo2014-0594.1.
Golub, G.H.; Van Loan, C.F. Matrix computations, 3 ed.; Johns Hopkins University Press: London, 1996.
Herrmann, F.J. Randomized sampling and sparsity: Getting more information from fewer samples. Geophysics 2010, 75, WB173–WB187. 10.1190/1.3506147.
Huang, W.; Feng, D.; Chen, Y. De-aliased and de-noise Cadzow filtering for seismic data reconstruction. Geophysical Prospecting 2020, 68, 553–571. 10.1111/1365-2478.12867.
Jia, Y.; Ma, J. What can machine learning do for seismic data processing? An interpolation application. Geophysics 2017, 82, V163–V177. 10.1190/geo2016-0300.1.
Kaplan, S.T.; Naghizadeh, M.; Sacchi, M.D. Data reconstruction with shot-profile least-squares migration. Geophysics 2010, 75, WB121–WB136. 10.1190/1.3478375.
Kaur, H.; Pham, N.; Fomel, S. Seismic data interpolation using deep learning with generative adversarial networks. Geophysical Prospecting 2021, 69, 307–326. 10.1111/1365-2478.13055.
Kirlin, R.L. Vector subspaces. In: Kirlin, R.L.; Done, W.J., Eds.; Covariance analysis for seismic signal processing, Society of Exploration Geophysicists: Tulsa, 1999; Geophysical Developments Series: 35-50. chapter 4. 10.1190/1.9781560802037.ch4.
Kolda, T.G.; Bader, B.W. Tensor decompositions and applications. SIAM Review 2009, 51, 455–500. 10.1137/07070111x.
Kreimer, N.; Sacchi, M.D. A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation. Geophysics 2012, 77, V113–V122. 10.1190/geo2011-0399.1.
Kreimer, N.; Stanton, A.; Sacchi, M.D. Tensor completion based on nuclear norm minimization for 5D seismic data reconstruction. Geophysics 2013, 78, V273–V284. 10.1190/geo2013-0022.1.
Liu, Y.; Fomel, S. Seismic data interpolation beyond aliasing using regularized nonstationary autoregression. Geophysics 2011, 76, V69–V77. 10.1190/geo2010-0231.1.
Liu, B.; Sacchi, M.D. Minimum weighted norm interpolation of seismic records. Geophysics 2004, 69, 1560–1568. 10.1190/1.1836829.
Menke, W. Geophysical data analysis: Discrete inverse theory, 3 ed.; Academic Press: Oxford, 2012. Naghizadeh, M.; Sacchi, M.D. Seismic data reconstruction using multidimensional prediction filters. Geophysical Prospecting 2010a, 58, 157–173. 10.1111/j.1365-2478.2009.00805.x.
Naghizadeh, M.; Sacchi, M.D. Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data. Geophysics 2010b, 75, WB189–WB202. 10.1190/1.3509468.
Naghizadeh, M.; Sacchi, M.D. On sampling functions and Fourier reconstruction methods. Geophysics 2010c, 75, WB137–WB151. 10.1190/1.3503577.
Naghizadeh, M.; Sacchi, M.D. Multidimensional de-aliased Cadzow reconstruction of seismic records. Geophysics 2013, 78, A1–A5. 10.1190/geo2012-0200.1.
Naghizadeh, M. Seismic data interpolation and denoising in the frequency-wavenumber domain. Geophysics 2012, 77, V71–V80. 10.1190/geo2011-0172.1.
Oboué, Y.A.S.I.; Chen, W.; Wang, H.; Chen, Y. Robust damped rank-reduction method for simultaneous denoising and reconstruction of 5D seismic data. Geophysics 2021, 86, V71–V89. 10.1190/geo2020- 0032.1.
Oropeza, V.; Sacchi, M. Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics 2011, 76, V25–V32. 10.1190/1.3552706.
Porsani, M.J. Seismic trace interpolation using half-step prediction filters. Geophysics 1999, 64, 1461– 1467. 10.1190/1.1444650.
Qin, F.; Leger, P.C.; Ren, J.; Aleksic, V.; Rowe, R.W.; Zainaldin, S.; Hadab, S.A. A robust implementation and application of antileakage Fourier transform interpolation. The Leading Edge 2018, 37, 538–543. 10.1190/tle37070538.1.
Spitz, S. Seismic trace interpolation in the F-X domain. Geophysics 1991, 56, 785–794. 10.1190/1.1443096.
Stolt, R.H. Seismic data mapping and reconstruction. Geophysics 2002, 67, 890–908. 10.1190/1.1484532.
Strang, G. Linear Algebra and Its Applications, 4 ed.; Cengage Learning: Andover, 2018.
Tomasi, G.; Bro, R. PARAFAC and missing values. Chemometrics and Intelligent Laboratory Systems 2005, 75, 163–180. 10.1016/j.chemolab.2004.07.003.
Trad, D. Interpolation and multiple attenuation with migration operators. Geophysics 2003, 68, 2043–2054. 10.1190/1.1635058.
Trad, D. Five-dimensional interpolation: Recovering from acquisition constraints. Geophysics 2009, 74, V123–V132. 10.1190/1.3245216.
Trickett, S.; Burroughs, L. Prestack rank-reduction-based noise suppression. CSEG Recorder. 2009, 34, 24-31.
Trickett, S.; Burroughs, L.; Milton, A.; Walton, L.; Dack, R. Rank-reduction-based trace interpolation. 80th Annual Int. Meeting, SEG, Expanded Abstracts 2010, pp. 3829–3833. 10.1190/1.3513645.
Ulrych, T.J.; Sacchi, M.D.; Freire, S.L.M. Eigenimage processing of seismic sections. In: Kirlin, R.L.; Done, W.J., Eds.; Covariance analysis for seismic signal processing, Society of Exploration Geophysicists: Tulsa, 1999; Geophysical Developments Series: 241-274; chapter 12. 10.1190/1.9781560802037.ch12.
Vermeer, G.J.O. 3D seismic survey design, 2 ed.; Society of Exploration Geophysicists: Tulsa, 2012. 10.1190/1.9781560803041.
Wang, B.; Zhang, N.; Lu, W.; Wang, J. Deep-learning-based seismic data interpolation: A preliminary result. Geophysics 2019, 84, V11–V20. 10.1190/geo2017-0495.1.
Xu, S.; Zhang, Y.; Pham, D.; Lambaré, G. Antileakage Fourier transform for seismic data regularization. Geophysics 2005, 70, V87–V95. 10.1190/1.1993713.
Zhang, H.; Zhang, H.; Zhang, J.; Hao, Y.; Wang, B. An anti-aliasing POCS interpolation method for regularly undersampled seismic data using curvelet transform. Journal of Applied Geophysics 2020, 172, 1–11. 10.1016/j.jappgeo.2019.103894.
Zwartjes, P.M.; Sacchi, M.D. Fourier reconstruction of nonuniformly sampled, aliased seismic data. Geophysics 2007, 72, V21–V32. 10.1190/1.2399442.
DOI: http://dx.doi.org/10.22564/brjg.v40i4.2186
This work is licensed under a Creative Commons Attribution 4.0 International License.
a partir do v.37n.4 (2019) até o presente
v.15n.1 (1997) até v.37n.3 (2019)
Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br
Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.