Tectono-Stratigraphic Modeling of the Wildcat Prospect (Gato do Mato), Santos Basin, Brazil Focusing on Presalt Carbonate Reservoirs

Raissa Carvalho Silva, Francisco Abrantes Júnior, Wagner Moreira Lupinacci

Abstract


The Santos Basin is the largest Brazilian offshore basin and is currently the main hydrocarbon producer in the country, comprising an area of approximately 350,000 km2 . Given the importance of understanding and analyzing its carbonate reservoirs (Itapema and Barra Velha formations), a tectono-stratigraphic model of the Wildcat Prospect was created. This area is in the Outer High of the Santos Basin, main region of the presalt carbonate reservoirs in the Santos Basin. The 3D model is focused on the presalt reservoir and the understanding of the main tectonic structures in this area and their relationships that conditioned the carbonate successions deposition. Four steps were followed to analyze the depositional and structural framework and build the tectono-stratigraphic model: (i) generation and analysis of seismic attributes to identify and characterize seismic terminations (erosional truncation, toplap, and onlap), seismic facies (debris, build-ups, platform carbonates, and bottom lake), and assist in the tectono-stratigraphic analysis; (ii) seismic interpretation of horizons and faults, which were used as input for the modeling as surfaces and fault planes, creating compartmentalized blocks; (iii) construction of the stratigraphic column to classify the succession of tectonic and sedimentary events; and (iv) the construction of the model. This study helps to understand the depositional and structural evolution of the presalt and provides a three-dimensional understanding of the influence of faults on the reservoir geometry. Faults influenced the eroded zone observed in the Upper Barra Velha Formation, since this erosion occurs mainly at the edges of the large-throw faults. The build-up seismic facies, the main reservoirs in the study area, have a trend NW-SE to N-S following the large-throw faults.

Keywords


Tectono-stratigraphic modeling; carbonate reservoirs; Wildcat Prospect; Santos Basin

Full Text:

PDF

References


ANP, 2021, Boletim da Produção de Petróleo e Gás Natural: Rio de Janeiro, RJ, Brazil. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, 125, 40 p.

Antunes, P.T.S., 2003, Modelagem Numérica Tridimensional Visando o Estudo de Tensões na Bacia do Recôncavo Via Método dos Elementos Finitos: PhD Thesis, Programa de Engenharia Civil/COPPE, Universidade Federal do Rio de Janeiro, RJ, Brazil.

Bahorich, M., and S. Farmer, 1995, 3-D Seismic Discontinuity for Faults and Stratigraphic Features: The Coherence Cube: The Leading Edge, 14, 1053–1058, doi: 10.1190/1.1437077.

Baskin, R.L., N.W. Driscoll, and V.P. Wright, 2013, Controls on lacustrine microbialite distribution in Great Salt Lake, Utah, in Vining B., K. Gibbons, W. Morgan, D. Bosence, D. Le Heron, E. Le Ber, and T. Pritchard, Eds., Microbial Carbonates in Space and Time: Implications for Global Exploration and Production: Programme and Abstract Volume, 70–71.

Bond, C.E., A.D. Gibbs, Z.K. Shipton, and S. Jones, 2007, What do you think this is?: ‘conceptual uncertainty’ in geoscience interpretation: GSA Today, 17, 4–10, doi: 10.1130/GSAT01711A.1.

Bond, C.E., Z.K. Shipton, A.D., Gibbs, and S. Jones, 2008, Structural models: optimizing risk analysis by understanding conceptual uncertainty: First Break, 26, 65–71, doi: 10.3997/1365-2397.2008006.

Brown, R.E., and W.L. Fisher, 1977, Seismic-stratigraphy interpretation of depositional surfaces: examples from Brazilian rift and pull-apart basins, in Payton, C.E., Ed., Seismic Stratigraphy – Applications to hydrocarbon exploration: Am. Assoc. Petrol. Geol., Memoir 26, 213–248.

Buckley, J.D., D.W. Bosence, and C.F. Elders, 2015, Tectonic setting and stratigraphic architecture of an Early Cretaceous lacustrine carbonate platform, Sugar Loaf High, Santos Basin, Brazil. Geological Society, London, Special Publications, 418, p. 175–191, doi: 10.1144/SP418.13.

Carminatti, M., B. Wolff, and L.A.P. Gamboa, 2008, New exploratory frontiers in Brazil: In: 19th World Petroleum Council, Madrid, Spain.

Castro, T.M., 2019, Avaliação dos reservatórios carbonáticos do pré-sal no Campo de Búzios, Bacia de Santos: Master Dissertation, Programa de Pós-Graduação em Dinâmica dos Oceanos e Terra, Universidade Federal Fluminense, Niterói, RJ, Brazil. 168 p.

Chopra, S., and K.J. Marfurt, 2007, Seismic Attributes for Prospect Identification and Reservoir Characterization: Society of Exploration Geophysicists, Tulsa, OK, 481 pp, doi: 10.1190/1.9781560801900.

Faria, D.L.P., A.T. Reis, and O.G. Souza Jr., 2017, Three-dimensional stratigraphic-sedimentological forward modeling of an Aptian carbonate reservoir deposited during the sag stage in the Santos basin, Brazil: Marine and Petroleum Geology, 88, 676–695, doi: 10.1016/j.marpetgeo.2017.09.013.

Ferreira, D.J.A., and W.M. Lupinacci, 2018, An approach for three-dimensional quantitative carbonate reservoir characterization in the Pampo field, Campos Basin, offshore Brazil: Am. Assoc. Petrol. Geol. Bull., 102, 2267–2282, doi: 10.1306/04121817352.

Ferreira, D.J.A., W.M. Lupinacci, I.A. Neves, J.P.R. Zambrini, A.L. Ferrari, L.A.P. Gamboa, M. Olho Azul, 2019, Unsupervised seismic facies classification applied to a presalt carbonate reservoir, Santos Basin, offshore Brazil: Am. Assoc. Petrol. Geol. Bull., 103, 997–1012, doi: 10.1306/10261818055.

Ferreira, D.J.A., H.P.L. Dutra, T.M. Castro, and W.M. Lupinacci, 2021a, Geological process modeling and geostatistics for facies reconstruction of presalt carbonates: Marine and Petroleum Geology, 124, 104828, doi: 10.1016/j.marpetgeo.2020.104828.

Ferreira, D.J.A., R.M. Dias, W.M. Lupinacci, 2021b, Seismic pattern classification integrated with permeability-porosity evaluation for reservoir characterization of presalt carbonates in the Buzios Field, Brazil: Journal of Petroleum Science and Engineering 201, 108441, doi: 10.1016/j.petrol.2021.108441.

Gomes, P.O., B. Kildonk, J. Miken, T. Grow, and R. Barragan, 2009, The Outer High or the Santos Basin, Southern São Paulo Plateau, Brazil: Presalt Exploration Outbreak, Paleogeographic Setting, and Evolution of the Syn-Rift structures: AAPG Search and Discovery Article #10193.

Gomes, J.P., R.B. Bunevich, L.R. Tedeschi, M.E. Tucker, and F.F. Whitaker, 2020, Facies classification and patterns of lacustrine carbonate deposition of the Barra Velha Formation, Santos Basin, Brazilian pre-salt: Mar. Petrol. Geol., 113, 1–21p, doi: 10.1016/j.marpetgeo.2019.104176.

Gringarten, E., B. Arpat, A. Haouesse, A. Dutranois, L. Deny, S. Jayr, A.L. Tertois, J.L. Mallet, A. Bernal, and L. Nghiem, 2008, New Grids for Robust Reservoir Modeling: SPE ATCE 2008, Denver, Colorado, USA, doi: 10.2118/116649-MS.

Herlinger, R.J., Zambonato, E.E., L.F. De Ros, 2017, Influence of diagenesis on the quality of lower Cretaceous Presalt lacustrine carbonate reservoirs from northern Campos Basin, offshore Brazil: Journal of Sedimentary Research, 87, 1285–1313, doi: 10.2110/jsr.2017.70.

Jesus, C., M. Olho Azul, W.M. Lupinacci, and L. Machado, 2019, Multiattribute framework analysis for the identification of carbonate mounds in the Brazilian presalt zone: Interpretation, 7, 2, T467–T476, doi: 10.1190/INT-2018-0004.1.

Mitchum Jr., R.M., P.R. Vail, and J.B. Sangree, 1977, Seismic stratigraphy and global changes of sea level, part 6: Interpretation of seismic reflection patterns in depositional sequences, in Payton C.E., Ed., AAPG Memoir 26 - Seismic stratigraphy – Applications to hydrocarbon exploration: Tulsa, American Association of Petroleum Geologists, 117–133, doi: 10.1306/M26490C8.

Moreira, J.L.P., C.V. Madeira, J.A. Gil, and M.A.P. Machado, 2007, Bacia de Santos: Boletim de Geociências da Petrobras, 15, 531–549.

Neves, I.A., W.M. Lupinacci, D.J.A. Ferreira, J.P.R. Zambrini, L.O.A. Oliveira, M. Olho Azul, A.L. Ferrari, and L.A.P. Gamboa, 2019, Presalt reservoirs of the Santos Basin: cyclicity, electrofacies and tectonic-sedimentary Evolution: Interpretation, 7, 4, 1–11, doi: 10.1190/INT-2018-0237.1.

Petersohn, E., 2013, Bacia de Santos: Sumário Geológico e área em oferta: ANP – Agência Nacional do Petróleo, Gás Natural e Biocombustíveis – Seminário Técnico, Rio de Janeiro, RJ, Brazil, p. 34.

Peçanha, A.A., W.M. Lupinacci, D.J.A. Ferreira, and A.F.M. Freire, 2019, A workflow for reservoir characterization applied to presalt coquinas from the Linguado Field, Campos Basin, Brazil: J. Petrol. Sci. Eng., 183, 106451, doi: 10.1016/j.petrol.2019.106451.

Penna, R., and W.M. Lupinacci, 2021, 3D modeling of flow units and petrophysical properties in Brazilian presalt carbonate: Marine and Petroleum Geology, 124, 104829, doi: 10.1016/j.marpetgeo.2020.104829.

Pozo, M., and J. Casas, 1999, Origin of kerolite and associated Mg clays in palustrine-lacustrine environments. The Esquivias deposit (Neogene Madrid Basin, Spain): Clay Minerals, 34, 395–418, doi: 10.1180/000985599546316.

Polson, D., and A. Curtis, 2010, Dynamics of uncertainty in geological interpretation: Journal of the Geological Society, London, 167, 5–10, doi: 101144/0016-76492009-055.

Refsgaard, J.C., J.P. Van Der Sluijs, J. Brown, and P. Van Der Keur, 2006, A framework for dealing with uncertainty due to model structure error: Advances in Water Resources, 29, 1586–1597, doi: 10.1016/j.advwatres.2005.11.013.

Szatmari, P., and E.J. Milani, 2016, Tectonic control of the oil-rich large igneous-carbonate-salt province of the South Atlantic rift: Marine and Petroleum Geology, 77, 567–596, doi: 10.1016/j.marpetgeo.2016.06.004.

Terra, J.G.S., A.R. Spadini, A.B. França, C.L. Sombra, E.E. Zambonato, L.C.S. Juschaks, L.M. Arienti, M.M. Erthal, M. Blauth, M.P. Franco, N.S. Matsuda, N.G.C. da Silva, P.A. Moretti Junior, R.S.F. D’Avilla, R.S. Souza, S.N. Tonietto, S.M.C. dos Anjos, V.S. Campinho, W.R. Winter, 2010, Classificações clássicas de rochas carbonáticas: Bol. Geociências Petrobras, 18, 1, 9–29.

Teixeira, L., W.M. Lupinacci, and A. Maul, 2020, Quantitative seismic-stratigraphic interpretation of the evaporite sequence in the Santos Basin: Marine and Petroleum Geology, 122, 104690, doi: 10.1016/j.marpetgeo.2020.104690.

Wright, V.P., and A.J. Barnett, 2015, An abiotic model for the development of textures in some South Atlantic early Cretaceous lacustrine carbonates: Geological Society, London, Special Publications, 418, 1, 209–219, doi: 10.1144/SP418.3.

Wright, V.P., K. Rodriguez, 2018, Reinterpreting the South Atlantic presalt ‘microbialite’ reservoirs: Petrographic, isotopic and seismic evidence for a shallow evaporitic lake depositional model: First Break, 36, 71–77, doi: 10.3997/1365-2397.n0094.

Xie, J., K. Qiu, B. Zhong, Y. Pan., X. Shi, and L. Wang, 2018, Construction of a 3D Geomechanical Model for Development of a Shale Gas Reservoir in the Sichuan Basin: SPE Drill & Compl., 33, 4, 275–297, doi: 10.2118/187828-PA.




DOI: http://dx.doi.org/10.22564/brjg.v40i4.2188

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.





 

>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)

 

Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br

Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.

Creative Commons