1.5D Time Domain Electromagnetic Inversion Using Global Optimization Methods and Parallel Processing
Abstract
An innovative comparative study among three different global optimization methods (GOMs) to invert time domain electromagnetic data (TDEM), was applied in the 1.5D subsurface resistivity imaging. These stochastic methods allow the incorporation of different kinds of constraints in the objective function, due to the easiness of implementation in their algorithms and their computational efficiency. Nevertheless, global optimization methods, like any other based on swarm intelligence cost much computational time, including problems with a high number of unknown parameters and when the forward modeling involves time-consuming calculations such as Gaver-Stehfest inverse transforms, Hankel transforms, and others. To overcome this difficulty, we developed a parallel pure MPI version of each GOM, allowing the distribution of the computation among several cores of a cluster. The performances of the classic version of particle swarm optimization (PSO), grey wolf optimizer (GWO), and whale optimization algorithm (WOA) using MPI parallelism for solving 1.5D TDEM inverse problems are compared here in a set of synthetic and real data. The principal outcomes show: (1) These GOMs reproduce quite well the distribution of subsurface resistivity either synthetic models or real data, (2) WOA and PSO exhibit better computational performances, converging first than GWO, (3) WOA provided better performance in the final value achieved of the cost function than PSO and GWO, and (4) pure MPI parallelism provided a 17x and 50x speedup in the computation time for both synthetic and real data, respectively. In a better way to classify this comparison, we analyzed the solutions using total variation (TV) and Global smoothness (GS) constraints, to identify smooth and sharp structures. Additionally, we have diminished the computational time execution with the parallel solution (MPI version of each stochastic traditional method) against the sequential processing.
Keywords
Full Text:
PDFReferences
Abdelazeem, M., M. Gobashy, M.H. Khalil, and M. Abdrabou, 2019, A complete model parameter optimization from self-potential data using Whale algorithm: Journal of Applied Geophysics, 170, 103825, doi: 10.1016/j.jappgeo.2019.103825.
Agarwal, A., A. Chandra, S. Shalivahan, and R.K. Singh, 2018, Grey wolf optimizer: a new strategy to invert geophysical data sets: Geophysical Prospecting, 66, 6, 1215–1226, doi: 10.1111/1365-2478.12640.
Anderson, W.L., 1982, Calculation of transient soundings for a coincident loop system (Program TCOLOOP): U.S. Geological Survey, Open-File Report 82-378.
Assumpção, M., T.H. Yamabe, J.R. Barbosa, V. Hamza, A.E.V. Lopes, L. Balancin, and M.B. Bianchi, 2010, Seismic activity triggered by water wells in the Paraná Basin, Brazil: Water Resources Research, 46, 7, W07527, doi: 10.1029/2009WR008048.
Auken, E., and A.V. Christiansen, 2004, Layered and laterally constrained 2D inversion of resistivity data: Geophysics, 69, 3, 752–761, doi: 10.1190/1.1759461.
Auken, E., A.V. Christiansen, B.H. Jacobsen, N. Foged, and K.I. Sørensen, 2005, Piecewise 1D laterally constrained inversion of resistivity data: Geophysical Prospecting, 53, 4, 497–506, doi: 10.1111/j.1365-2478.2005.00486.x.
Auken, E., A.V. Christiansen, L.H. Jacobsen, and K.I. Sørensen, 2008, A resolution study of buried valleys using laterally constrained inversion of TEM data: Journal of Applied Geophysics, 65, 1, 10–20, doi: 10.1016/j.jappgeo.2008.03.003.
Barboza, F.M., W.E. Medeiros, and J.M. Santana, 2018, Customizing constraint incorporation in direct current resistivity inverse problems: A comparison among three global optimization methods: Geophysics, 83, 6, E409–E422, doi: 10.1190/geo2017-0188.1.
Bartle, R.G., 1964, The elements of real analysis, vol 2, John Wiley & Sons, New York.
Bertete-Aguirre, H., E. Cherkaev, and M. Oristaglio, 2002, Non-smooth gravity problem with total variation penalization functional: Geophysical Journal International, 149, 2, 499–507, doi: 10.1046/j.1365-246X.2002.01664.x.
Bortolozo, C.A., M.A. Couto Jr., J.L. Porsani, E.R. Almeida, and F.A.M. dos Santos, 2014, Geoelectrical characterization using joint inversion of VES/TEM data: A case study in Paraná Sedimentary Basin, São Paulo State, Brazil: Journal of Applied Geophysics, 111, 33–46, doi: 10.1016/j.jappgeo.2014.09.009.
Chandra, A., A. Agarwal, and R.K. Singh, 2017, Grey wolf optimisation for inversion of layered earth geophysical datasets: Near Surface Geophysics, 15, 5, 499–513, doi: 10.3997/1873-0604.2017017.
Chen, W., H. Hong, M. Panahi, H. Shahabi, Y. Wang, A. Shirzadi, S. Pirasteh, A.A. Alesheikh, K. Khosravi, S. Panahi, F. Rezaie, S. Li, A. Jaafari, D.T. Bui, and B. Bin Ahmad, 2019, Spatial prediction of landslide susceptibility using GIS-based data mining techniques of ANFIS with Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO): Applied Sciences, 9, 18, 3755, doi: 10.3390/app9183755.
Cheng, J., F. Li., S. Peng, X. Sun, J. Zheng, and J. Jia, 2015, Joint inversion of TEM and DC in roadway advanced detection based on particle swarm optimization: Journal of Applied Geophysics, 123, 30–35, doi: 10.1016/j.jappgeo.2015.09.008.
Christensen, N.B., 1990, Optimized fast Hankel transform filters: Geophysical Prospecting, 38, 5, 545–568, doi: 10.1111/j.1365-2478.1990.tb01861.x.
Clerc, M., 1999, The swarm and the queen: towards a deterministic and adaptive particle swarm optimization: 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), IEEE, p 1951–1957.
Cockett, R., S. Kang, L.J. Heagy, A. Pidlisecky, and D.W. Oldenburg, 2015, SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications: Computers & Geosciences, 85, 142–154, doi: 10.1016/j.cageo.2015.09.015.
Constable, S.C., R.L. Parker, and C.G. Constable, 1987, Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data: Geophysics, 52, 3, 289–300, doi: 10.1190/1.1442303.
Engelbrecht, A.P., 2007, Computational Intelligence: An Introduction: John Wiley & Sons, 10.1002/9780470512517.
Geonics, 1994, PROTEM-47D, Operating Manual: Geonics Limited, Mississauga, Ontario, Canada.
Giampá, C.E.Q., and J.C. de Souza, 1982, Potencial aquífero dos basaltos da Formação Serra Geral no Estado de São Paulo: 2º Congresso Brasileiro de Águas Subterrâneas, ABAS, Salvador, BA, Brazil.
Gill, P.E., W. Murray, and M.H. Wright, 2019, Practical optimization: Classics in Applied Mathematics, SIAM, 401 pp, doi: 10.1137/1.9781611975604.
Godio, A., and A. Santilano, 2018, On the optimization of electromagnetic geophysical data: Application of the PSO algorithm: Journal of Applied Geophysics, 148, 163–174, doi: 10.1016/j.jappgeo.2017.11.016.
Goldberg, D., 1989, Genetic algorithms in search, optimization, and machine learning: Addison-Wesley, Boston, MA, USA, 372 pp.
Hansen, P.C., 1992, Analysis of discrete ill-posed problems by means of the L-curve: SIAM Review, 34, 4, 561–580, doi: 10.1137/1034115.
deGroot-Hedlin, C., and S. Constable, 1990, Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data: Geophysics, 55, 12, 1613–1624, doi: 10.1190/1.1442813.
Ingeman-Nielsen, T., and F. Baumgartner, 2006, CR1Dmod: A Matlab program to model 1D complex resistivity effects in electrical and electromagnetic surveys: Computers & Geosciences, 32, 9, 1411–1419, doi: 10.1016/j.cageo.2006.01.001.
Martínez, J.L.F., E.G. Gonzalo, J.P.F. Álvarez, H.A. Kuzma, and C.O.M. Pérez, 2010, PSO: A powerful algorithm to solve geophysical inverse problems: Application to a 1D-DC resistivity case: Journal of Applied Geophysics, 71, 1, 13–25, doi: 10.1016/j.jappgeo.2010.02.001.
Kennedy, J., 2006, Swarm intelligence, in Zomaya, A.Y., Ed., Handbook of nature-inspired and innovative computing: Springer, Boston, MA, chapter 6, 187–219, doi: 10.1007/0-387-27705-6_6.
Kennedy, J., and R. Eberhart, 1995, Particle swarm optimization: ICNN’95 - International Conference on Neural Networks, IEEE, Perth, WA, Australia, vol.4, 1942–1948, doi: 10.1109/ICNN.1995.488968.
Kirkpatrick, S., C.D. Gelatt Jr., and M.P. Vecchi, 1983, Optimization by simulated annealing: Science, 220, 4598, 671–680, doi: 10.1126/science.220.4598.671.
Lalwani, S., H. Sharma, S.C. Satapathy, K. Deep, and J.C. Bansal, 2019, A survey on parallel particle swarm optimization algorithms: Arabian Journal for Science and Engineering, 44, 2899–2923, doi: 10.1007/s13369-018-03713-6.
Lee, C.-Y., and G.-L. Zhuo, 2021, A hybrid whale optimization algorithm for global optimization: Mathematics, 9, 13, 1477, doi: 10.3390/math9131477.
Li, S.-Y., S.-M. Wang, P.-F. Wang, X.-L. Su, X.-S. Zhang, and Z.-H. Dong, 2018, An improved grey wolf optimizer algorithm for the inversion of geoelectrical data: Acta Geophysica, 66, 607–621, doi: 10.1007/s11600-018-0148-8.
Liang, X., S. Xu, Y. Liu, and L. Sun, 2022, A Modified Whale Optimization Algorithm and Its Application in Seismic Inversion Problem. Mobile Information Systems, 2022, 9159130, 1–18, doi: 10.1155/2022/9159130.
Loke, M.H., I. Acworth, and T. Dahlin, 2003, A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys: Exploration Geophysics, 34, 3, 182–187, doi: 10.1071/EG03182.
Menke, W., 2018, Geophysical data analysis: Discrete inverse theory: Academic Press.
Metcalfe, T.S., and P. Charbonneau, 2003, Stellar structure modeling using a parallel genetic algorithm for objective global optimization: Journal of Computational Physics, 185, 1, 176–193, doi: 10.1016/S0021-9991(02)00053-0.
Mirjalili, S., and A. Lewis, 2016, The Whale Optimization Algorithm: Advances in Engineering Software, 95, 51–67, doi: 10.1016/j.advengsoft.2016.01.008.
Mirjalili, S., S.M. Mirjalili, and A. Lewis, 2014, Grey wolf optimizer: Advances in Engineering Software, 69, 46–61, doi: 10.1016/j.advengsoft.2013.12.007.
Monteiro, F.A.S., and H.M. El-Kaliouby, 2010, Comparative study of local versus global methods for 1D joint inversion of direct current resistivity and time-domain electromagnetic data: Near Surface Geophysics, 8, 2, 135–143, doi: 10.3997/1873-0604.2009056.
Muro, C., R. Escobedo, L. Spector, and R.P. Coppinger, 2011, Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations: Behavioural Processes, 88, 3, 192–197, doi: 10.1016/j.beproc.2011.09.006.
Porsani, J.L., E.R. Almeida, C.A. Bortolozo, and F.A.M. dos Santos, 2012, TDEM survey in an area of seismicity induced by water wells in Paraná sedimentary basin, Northern São Paulo State, Brazil: Journal of Applied Geophysics, 82, 75–83, doi: 10.1016/j.jappgeo.2012.02.005.
Rawlinson, N., A.M. Reading, and B.L.N. Kennett, 2006, Lithospheric structure of Tasmania from a novel form of teleseismic tomography: Journal of Geophysical Research: Solid Earth, 111, B02301, doi: 10.1029/2005JB003803.
Rudin, L.I., S. Osher, and E. Fatemi, 1992, Nonlinear total variation based noise removal algorithms: Physica D: Nonlinear Phenomena, 60, 1-4, 259–268, doi: 10.1016/0167-2789(92)90242-F.
Sandberg, S.K., 1988, Microcomputer software for the processing and forward modeling of transient electromagnetic data taken in the central loop sounding configuration: New Jersey Department of Environmental Protection, Division of Water.
Santos, F.A.M., 2004, 1-D laterally constrained inversion of EM34 profiling data: Journal of Applied Geophysics, 56, 2, 123–134, doi: 10.1016/j.jappgeo.2004.04.005.
Sen, M.K., and P.L. Stoffa, 1995, Global optimization methods in geophysical inversion: Cambridge University Press.
Sen, M.K., and P.L. Stoffa, 2013, Global optimization methods in geophysical inversion: Cambridge University Press, doi: 10.1017/CBO9780511997570.
Sen, M.K., B.B. Bhattacharya, and P.L. Stoffa, 1993, Nonlinear inversion of resistivity sounding data: Geophysics, 58, 4, 496–507, doi: 10.1190/1.1443432
Silva, J.B., W.E. Medeiros, and V.C. Barbosa, 2001, Potential-field inversion: Choosing the appropriate technique to solve a geologic problem: Geophysics, 66, 2, 511–520, doi: 10.1190/1.1444941.
DOI: http://dx.doi.org/10.22564/brjg.v40i4.2197
This work is licensed under a Creative Commons Attribution 4.0 International License.
a partir do v.37n.4 (2019) até o presente
v.15n.1 (1997) até v.37n.3 (2019)
Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br
Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.