Paleomagnetism of the Main South American Precambrian Cratons

Manoel Souza D'Agrella Filho, Augusto E. Rapalini, Ricardo Ivan Ferreira Trindade

Abstract


Here, we discuss the role of the main South American cratonic units in the Columbia and Rodinia supercontinents, and Gondwana megacontinent. According to paleomagnetic and geological data Amazonia and West Africa were linked to Baltica, Laurentia and Siberia forming West Columbia at ca. 1.78-1.75 Ga. The 1.78 to 1.42 Ga paleomagnetic data for Amazonia, Baltica and Laurentia suggest either, that West Columbia preserved its integrity, at least, up to 1.42 Ga, or Amazonia/West Africa broke-up from West Columbia at some time between 1.53 and 1.42 Ga. On the other hand, the Congo-São Francisco, North China, Rio de la Plata, India and proto-Australia formed the East Columbia at ca. 1.78 Ga. However, the presently available Paleo to Mesoproterozoic paleomagnetic data for these cratonic blocks suggest that East Columbia was short-lived. At 1.1 Ga ago, Amazonia/West Africa, Congo-São Francisco, Kalahari and India probably formed a megacontinent that later collided with Laurentia and Baltica forming Rodinia at ca. 1.0 Ga. Most probably, Rodinia broke-up at ca. 750 Ma, when Congo-São Francisco, Kalahari and other smaller blocks rotated ca. 90° counterclockwise, closing the Brasiliano/Clymene Ocean and docked against Amazonia/West Africa and Rio de la Plata at ca. 600-570 Ma ago forming West Gondwana.



Keywords


Amazonian Craton; São Francisco Craton; Rio de la Plata Craton; supercontinents.

Full Text:

PDF

References


Afonso, J.W.L., P. Franceschinis, A.E. Rapalini, M.J. Arrouy, L. Gómez-Peral, D. Poiré, S. Caetano-Filho, and R.I.F. Trindade, 2023, Paleomagnetism of the Ediacaran Avellaneda Formation (Argentina), Part II: Magnetic and chemical stratigraphy constraints on the onset of the Shuram carbon excursión: Precambrian Research, 389, 107015, doi: 10.1016/j.precamres.2023.107015.

Alkmim, F.F., and W. Teixeira, 2017, The Paleoproterozoic Mineiro belt and the Quadrilátero Ferrífero. In: Heilbron, M., F. Alkmim, U.G. Cordani, Eds., São Francisco Craton and Its Margins, Eastern Brazil: Regional Geology Reviews Series. Springer-Verlag, Cham, pp. 71–94, chapter 5, doi: 10.1007/978-3-319-01715-0_5.

Álvarez, O., M. Gimenez, C. Braitenberg, and A. Folguera, 2012, GOCE satellite derived gravity and gravity gradient corrected for topographic effect in the South Central Andes region: Geophysical Journal International, 190, 2, 941–959, doi: 10.1111/j.1365-246X.2012.05556.x.

Antonio, P.Y.J., M.S. D’Agrella-Filho, R.I.F. Trindade, A. Nédélec, D.C. Oliveira, F.F. Silva, M. Roverato, and C. Lana, 2017, Turmoil before the boring billion: Paleomagnetism of the 1880–1860 Ma Uatumã event in the Amazonian Craton: Gondwana Research, 49, 106–129, doi: 10.1016/j.gr.2017.05.006.

Antonio, P.Y.J., M.S. D’Agrella-Filho, A. Nédélec, M. Poujol, C. Sanchez, E.L. Dantas, R. Dall’Agnol, M.F.B. Teixeira, A. Proietti, C.I. Martínez Dopico, D.C. Oliveira, F.F. Silva., B. Marangoanha, and R.I.F. Trindade, 2021a, New constraints for paleogeographic reconstructions at ca. 1.88 Ga from geochronology and paleomagnetism of the Carajás dyke swarm (eastern Amazonia): Precambrian Research, 353, 106039, doi: 10.1016/j.precamres.2020.106039.

Antonio, P.Y.J., R.I.F. Trindade, B. Giacomini, D. Brandt, and E. Tohver, 2021b, New high-quality paleomagnetic data from the Borborema Province (NE Brazil): Refinement of the APW path of Gondwana in the Early Cambrian: Precambrian Research, 360, 106243, doi: 10.1016/j.precamres.2021.106243.

Antonio, P.Y.J., L. Baratoux., R.I.F. Trindade, S. Rousse, A. Ayite, C. Lana, M. Macouin, E.W.K. Adu, C. Sanchez, M.A.L. Silva, A.-S. Firmin, C.I. Martínez Dopico, A. Proietti, P.O. Amponsah, and P.A. Sakyi, 2021c, West Africa in Rodinia: High quality paleomagnetic pole from the ~ 860 Ma Manso dyke swarm (Ghana): Gondwana Research, 94, 28–43, doi: 10.1016/j.gr.2021.02.010.

Arrouy, M.J., L.V. Warren, F. Quaglio, D.G. Poiré, M.G. Simões, M.B. Rosa, and L.E.G. Peral, 2016, Ediacaran discs from South America: Probable soft-bodied macrofossils unlock the paleogeography of the Clymene Ocean. Scientific Reports, 6, 30590, doi: 10.1038/srep30590.

Arrouy, M.J., C. Gaucher, D.G. Poiré, S. Xiao, L.E.G. Peral, L.V. Warren, N. Bykova, and F. Quaglio, 2019, A new record of late Ediacaran acritarchs from La Providencia group (Tandilia System, Argentina) and its biostratigraphical significance: Journal of South American Earth Sciences, 93, 283–293, doi: 10.1016/j.jsames.2019.05.015.

Ávila, C.A., W. Teixeira, E.M. Bongiolo, I.A. Dussin, T.A.T. Vieira, 2014, Rhyacian evolution of subvolcanic and metasedimentary rocks of the southern segment of the Mineiro belt, São Francisco Craton, Brazil: Precambrian Research, 243, 221–251, doi: 10.1016/j.precamres.2013.12.028.

Babinski, M., A.C. Pedrosa-Soares, R.I.F. Trindade, M. Martins, C.M. Noce, and D.Liu, 2012, Neoproterozoic glacial deposits from the Araçuaí orogen, Brazil: Age, provenance and correlations with the São Francisco craton and West Congo belt: Gondwana Research, 21, 2-3, 451–465, doi: 10.1016/j.gr.2011.04.008.

Bandeira, J., B. McGee, A. C. R. Nogueira, A. S. Collins, and R.I.F. Trindade, 2012, Sedimentological and provenance response to Cambrian closure of the Clymene ocean: the upper Alto Paraguai Group, Paraguay belt, Brazil: Gondwana Research, 21, 323–340, doi: 10.1016/j.gr.2011.04.006.

Baratoux, L., U. Söderlund, R. E. Ernst, E. de Roever, M. W. Jessell, S. Kamo, S. Naba, S. Perrouty, V. Metelka, D. Yatte, M. Grenholm, D. P. Diallo, P. M. Ndiaye, E. Dioh, C. Cournède, M. Benoit, D. Baratoux, N. Youbi, S. Rousse, and A. Bendaoud, 2019, New U–Pb Baddeleyite ages of Mafic Dyke Swarms of the West African and Amazonian Cratons: Implication for Their Configuration in Supercontinents Through Time, in Srivastava, R., R. Ernst, and P. Peng, Eds., Dyke Swarms of the World: A Modern Perspective: Springer, Singapore, p. 263–314, doi: 10.1007/978-981-13-1666-1_7

Barbosa, J.S.F., and P. Sabaté, 2002, Geological features and the Paleoproterozoic collision of four Archean crustal segments of the São Francisco Craton, Bahia, Brazil. A synthesis: Anais da Academia Brasileira de Ciências, 74, 2, 343–359, doi: 10.1590/S0001-37652002000200009.

Barbosa, J.S.F., and R.G. Barbosa, 2017, The Paleoproterozoic eastern Bahia orogenic domain, in Heilbron, M., U.G. Cordani, and F. Alkmim, Eds., São Francisco Craton, Eastern Brazil: Tectonic Genealogy of a Miniature Continent. Regional Geology Reviews. Springer, Cham, chapter 4, 57–69, doi: 10.1007/978-3-319-01715-0_4.

Barbosa, N., W. Teixeira, C.A. Ávila, P.M. Montecinos, E.M. Bongiolo, and F.F. Vasconcelos, 2019, U-Pb geochronology and coupled Hf-Nd-Sr isotopic-chemical constraints of the Cassiterita Orthogneiss (2.47–2.41-Ga) in the Mineiro belt, São Francisco craton: Geodynamic fingerprints beyond the Archean-Paleoproterozoic Transition: Precambrian Research, 326, 399–416, doi: 10.1016/j.precamres.2018.01.017.

Basei, M.A.S., S.B. Citroni, and O. Siga Junior, 1998, Stratigraphy and age of Fini-Proterozoic basins of Paraná and Santa Catarina states, southern Brazil: Boletim IG-USP, Série Científica, 29, 195–216, doi: 10.11606/issn.2316-8986.v29i0p195-216.

Basei, M.A.S., A. Nutman, O. Siga Júnior, C. R. Passarelli, and C. O. Drukas, 2009, The evolution and tectonic setting of the Luis Alves microplate of Southeastern Brazil: An exotic terrane during the Assembly of Western Gondwana: Developments in Precambrian Geology, 16, Part 7: Microcontinents and Suspect Terranes in SW Gondwana, Chapter 7.2, 273–291, doi: 10.1016/S0166-2635(09)01620-X.

Basei, M.A.S., L. Sánchez Bettucci, E. Peel, and F. Preciozzi, 2016, LAICPMS U-Pb zircon ages from basement and metamorphic cover of Piedra Alta Terrane, Río de la Plata Craton, Uruguay. In: Gaucher, C., and J. Montano, Eds., VIII Congreso Uruguayo de Geología, Montevideo, p. 117.

Bellon, U.D., G.F. Souza Junior, F.A. Temporim, M.S. D’Agrella-Filho, and R.I.F. Trindade, 2022, U-Pb geochronology of a reversely zoned pluton: Records of pre-to-post collisional magmatism of the Araçuaí belt (SE-Brazil)?: Journal of South American Earth Sciences, 119, 104045, doi: 10.1016/j.jsames.2022.104045.

Bettencourt, J.S., W.B. Leite Jr., A.S. Ruiz, R. Matos, B.L. Payolla, and R.M. Tosdal, 2010, The Rondonian-San Ignacio Province in the SW Amazonian Craton: An overview: Journal of South American Earth Sciences, 29, 28–46, doi: 10.1016/j.jsames.2009.08.006.

Bispo-Santos, F., M.S. D’Agrella-Filho, R.I.F. Trindade, S.-Å. Elming, L. Janikian, P.M. Vasconcelos, B.M. Perillo, I.I.G. Pacca, J.A. da Silva, and M.A.S. Barros, 2012, Tectonic implications of the 1419 Ma Nova Guarita mafic intrusives paleomagnetic pole (Amazonian Craton) on the longevity of Nuna: Precambrian Research, 196–197, 1–22, doi: 10.1016/j.precamres.2011.10.022.

Bispo-Santos, F., M.S. D’Agrella-Filho, R.I.F. Trindade, L. Janikian, and N.J. Reis, 2014a, Was there SAMBA in Columbia? Paleomagnetic evidence from 1790 Ma Avanavero mafic sills (Northern Amazonian Craton): Precambrian Research, 244, 139–155, doi: 10.1016/j.precamres.2013.11.002.

Bispo-Santos, F., M.S.D’Agrella-Filho, L. Janikian, N.J. Reis, R.I.F. Trindade, and M.A.A.A. Reis, 2014b, Towards Columbia: Paleomagnetism of 1980–1960Ma Surumu volcanic rocks, Northern Amazonian Craton: Precambrian Research, 244, 123–138, doi: 10.1016/j.precamres.2013.08.005.

Bispo-Santos, F., M.S. D’Agrella-Filho, L.J. Pesonen, J.M. Salminen, N.J. Reis, and J.M. Silva, 2020, The long life of SAMBA connection in Columbia: A Paleomagnetic Study of the 1535 Ma Mucajaí Complex, Northern Amazonian Craton, Brazil: Gondwana Research, 80, 285–302, doi: 10.1016/j.gr.2019.09.016.

Bispo-Santos, F., M.S. D’Agrella-Filho, R.P. de Almeida, A.S. Ruiz, O.A.L. Patroni, and J.M. Silva, 2023, Paleomagnetic study of the 1112 Ma Huanchaca mafic sills (SW Amazonian Craton, Brazil) and the paleogeographic implications for Rodinia Supercontinent: Precambrian Research, 388, 107013, doi: 10.1016/j.precamres.2023.107013.

Bleeker, W., 2003. The late Archean record: a puzzle in ca. 35 pieces: Lithos, 71, 99–134, 10.1016/j.lithos.2003.07.003.

Bogdanova, S. V., O. B. Gintov, D.M. Kurlovich, N.V. Lubnina, M.K.M. Nilsson, M.I. Orlyuk, I.K. Pashkevich, L. V. Shumlyanskyy, and V. I. Starostenko, 2013, Late Palaeoproterozoic mafic dyking in the Ukrainian Shield of Volgo-Sarmatia caused by rotation during the assembly of supercontinent Columbia (Nuna): Lithos, 174, 196–216, doi: 10.1016/j.lithos.2012.11.002.

Bonilla-Perez, A., J.C. Frantz, J. Charão-Marques, T. Cramer, J.A. Franco-Victoria, E. Mulocher, and Z. Amaya-Perea, 2013, Petrografía, Geoquímica y Geocronología del Granito de Parguaza em Colombia: Boletín de Geología, 35, 2, 83–104.

Borghetti, C., R.P. Philipp, P. Mandetta, and I.B. Hoffmann, 2018, Geochronology of the Archean Tumucumaque Complex, Amapá Terrane, Amazonian Craton, Brazil: Journal of South American Earth Sciences, 88, 294–311 doi: 10.1016/j.jsames.2018.08.019.

Bossi, J., and C. Cingolani, 2009, Extension and general evolution of the Río de la Plata Craton: Developments in Precambrian Geology, 16, 73–85, doi: 10.1016/S0166-2635(09)01604-1.

Buchan, K.L., S. Mertanen, R.G. Park, L.J. Pesonen, S.-Å. Elming, N. Abrahamsen, and G. Bylund, 2000, Comparing the drift of Laurentia and Baltica in the Proterozoic: the importance of key palaeomagnetic poles: Tectonophysics, 319, 167–198, doi: 10.1016/S0040-1951(00)00032-9.

Caxito, F.A., S. Hagemann, T.G. Dias, V. Barrote, E.L. Dantas, A.O. Chaves, M.S. Campello, and F.C. Campos, 2020, A magmatic barcode for the São Francisco Craton: Contextual in-situ SHRIMP U–Pb baddeleyite and zircon dating of the Lavras, Pará de Minas and Formiga dyke swarms and implications for Columbia and Rodinia reconstructions: Lithos, 374–375, 105708, doi: 10.1016/j.lithos.2020.105708.

Cawood, P.A., and S.A. Pisarevsky, 2017, Laurentia-Baltica-Amazonia relations during Rodinia assembly: Precambrian Research, 292, 386–397, doi: 10.1016/j.precamres.2017.01.031.

Cederberg, J., U. Söderlund, E.P. Oliveira, R.E. Ernst, and S.A. Pisarevsky, 2016, U-Pb baddeleyite dating of the Proterozoic Pará de Minas dyke swarm in the São Francisco craton (Brazil) – implications for tectonic correlation with the Siberian, Congo and North China cratons: GFF, 138, 219–240, doi: 10.1080/11035897.2015.1093543.

Chardon, D., O. Bamba, and K. Traoré, 2020, Eburnean deformation pattern of Burkina Faso and the tectonic significance of shear zones in the West African craton: Bulletin de la Société Géologique de France, BSGF - Earth Sci. Bull., 191, 1, 2, doi: 10.1051/bsgf/2020001.

Chaves, A.O., and C.R. Rezende, 2019, Fragments of 1.79-1.75 Ga Large Igneous Provinces in reconstructing Columbia (Nuna): a Statherian supercontinent-superplume coupling?: Episodes, 42, 1, 55–67, doi: 10.18814/epiiugs/2019/019006.

Chaves, A.O., R.E. Ernst, U. Söderlund, X. Wang, and T. Naeraa, 2019, The 920–900 Ma Bahia-Gangila LIP of the São Francisco and Congo cratons and link with Dashigou-Chulan LIP of North China craton: New insights from U-Pb geochronology and geochemistry: Precambrian Research, 329, 124–137, doi: 10.1016/j.precamres.2018.08.023.

Chernicoff, C.J., E.O. Zappettini, and J. Peroni, 2014, The Rhyacian El Cortijo suture zone: Aeromagnetic signature and insights for the geodynamic evolution of the southwestern Rio de la Plata craton. Argentina: Geoscience Frontiers, 5, 1, 43–52, doi: 10.1016/j.gsf.2013.04.004.

Choudhary, B.R., R.E. Ernst, Y.-G. Xu, D.A.D. Evans, M.O. de Kock, J.G. Meert, A.S. Ruiz, and G.A. Lima, 2019, Geochemical characterization of a reconstructed 1110 Ma Large Igneous Province: Precambrian Research, 332, 105382, doi: 10.1016/j.precamres.2019.105382.

Cingolani, C.A., 2011, The Tandilia system of Argentina as a southern extension of the Río de la Plata craton: An overview: International Journal of Earth Sciences, 100, 221–242, doi: 10.1007/s00531-010-0611-5.

Cingolani, C.A., L.A. Hartmann, J.O.S. Santos, and N.J. McNaughton, 2002, U-Pb SHRIMP dating of zircons from the Buenos Aires complex of the Tandilia belt, Río de La Plata craton, Argentina: XV Congreso Geológico Argentino, El Calafate, Santa Cruz, Actas 1, p. 149–154.

Cingolani, C.A., N.J. Uriz, and F. Chemale Jr., 2010, New U-Pb detrital zircon data from the Tandilia Neoproterozoic units: 7th South American Symposium on Isotope Geology, Brasília, DF, Brazil.

Condie, K.C., 2002, Continental growth during a 1.9-Ga superplume event: Journal of Geodynamics, 34, 249–264 , doi: 10.1016/S0264-3707(02)00023-6.

Cordani, U.G., and W. Teixeira, 2007, Proterozoic accretionary belts in the Amazonian Craton: Geological Society of America, GSA Memoirs, 200, 297–320, doi: 10.1130/2007.1200(14).

Cordani, U.G., M.S. D’Agrella-Filho, B.B. Brito-Neves, and R.I.F. Trindade, 2003, Tearing up Rodinia: the Neoproterozoic paleogeography of South American fragments: Terra Nova 15, 350–359, doi: 10.1046/j.1365-3121.2003.00506.x

Cordani, U.G., L.M. Fraga, N. Reis, C.C.G. Tassinari, and B.B. Brito-Neves, 2010, On the origin and tectonic significance of the intra-plate events of Grenvillian-type age in South America: A discussion: Journal of South American Earth Sciences, 29, 143–159, doi: 10.1016/j.jsames.2009.07.002.

Cordani, U.G., M.M. Pimentel, C.E.G. Araujo, M.A.S. Basei, R.A. Fuck, and V.A.V. Girardi, 2013a, Was there an Ediacaran Clymene Ocean in central South America?: American Journal of Science, 313, 517–539, doi: 10.2475/06.2013.01.

Cordani, U.G., M.M. Pimentel, C.E.G. Araujo, and R.A. Fuck, 2013b, The significance of the Transbrasiliano-Kandi tectonic corridor for the amalgamation of West Gondwana: Brazilian Journal of Geology, 43, 583–597, doi: 10.5327/Z2317-48892013000300012.

D’Agrella-Filho, M.S., and U.G. Cordani, 2017, The Paleomagnetic record of the São Francisco-Congo Craton, in Heilbron, M., U.G. Cordani, and F.F. Alkmim, Eds., São Francisco Craton, Eastern Brazil: Tectonic Genealogy of a Miniature Continent, Regional Geology Reviews, Springer, Cham, chapter 16, 305–320, doi: 10.1007/978-3-319-01715-0_16.

D'Agrella Filho, M.S., and I.G. Pacca, 1988, Paleomagnetism of the Itajai, Castro and Bom Jardim Groups from Southern Brazil: Geophysical Journal International, 93, 365–376, doi: 10.1111/j.1365-246X.1988.tb02008.x.

D'Agrella-Filho, M.S., I.G. Pacca, and K. Sato, 1986, Paleomagnetism of metamorphic rocks from the Piquete region - Ribeira Valley, Southeastern Brazil: Revista Brasileira de Geofísica, 4, 2, 79–84, doi: 10.22564/rbgf.v4i2.1039.

D’Agrella-Filho, M.S., I.G. Pacca, P.R. Renne, T.C. Onstott, and W. Teixeira, 1990, Paleomagnetism of Middle Proterozoic (1.01 to 1.08 Ga) mafic dykes in southeastern Bahia State—São Francisco Craton, Brazil: Earth and Planetary Science Letters, 101, 332–348, doi: 10.1016/0012-821X(90)90164-S.

D’Agrella-Filho M.S., R.I.F. Trindade, R. Siqueira, C.F. Ponte-Neto, and I.I.G. Pacca, 1998, Paleomagnetic constraints on the Rodinia supercontinent: Implications for its Neoproterozoic break-up and the formation of Gondwana: International Geology Review, 40, 171–188, doi: 10.1080/00206819809465205.

D’Agrella-Filho, M.S., M. Babinski, R.I.F. Trindade, W.R. Van Schmus, and M. Ernesto, 2000, Simultaneous remagnetization and U-Pb isotope resetting in Neoproterozoic carbonates of the São Francisco Craton, Brazil: Precambrian Research, 99, 179–196, doi: https://doi.org/10.1016/S0301-9268(99)00059-5.

D’Agrella-Filho, M.S., I.I.G. Pacca, R.I.F. Trindade, W. Teixeira, M.I.B. Raposo, and T.C. Onstott, 2004a, Paleomagnetism and 40Ar/39Ar ages of mafic dikes from Salvador (Brazil): New constraints on the São Francisco craton APW path between 1080 and 1010 Ma: Precambrian Research, 132, 55–77, doi: 10.1016/j.precamres.2004.02.003.

D’Agrella-Filho, M.S., M.I.B. Raposo, and M. Egydio-Silva, 2004b, Paleomagnetic study of the Juiz de Fora Complex, SE Brazil: Implications for Gondwana: Gondwana Research, 7, 1, 103–113, doi: 10.1016/S1342-937X(05)70309-9.

D’Agrella-Filho, M.S., E. Tohver, J.O.S. Santos, S.-Å. Elming, R.I.F. Trindade, I.I.G. Pacca, and M.C. Geraldes, 2008, Direct dating of paleomagnetic results from Precambrian sediments in the Amazon craton: Evidence for Grenvillian emplacement of exotic crust in SE Appalachians of North America: Earth and Planetary Science Letters, 267, 188–199, doi: 10.1016/j.epsl.2007.11.030.

D’Agrella-Filho, M.S., R.I.F. Trindade, E. Tohver, L. Janikian, W. Teixeira, and C. Hall, 2011, Paleomagnetism and 40Ar/39Ar geochronology of the high-grade metamorphic rocks of the Jequié block, São Francisco Craton: Atlantica, Ur and beyond: Precambrian Research, 185, 183–201, doi: 10.1016/j.precamres.2011.01.008.

D’Agrella-Filho, M.S., R.I.F. Trindade, S.-Å. Elming, W. Teixeira, E. Yokoyama, E. Tohver, M.C. Geraldes, I.I.G. Pacca, M.A.S. Barros, and A.S. Ruiz, 2012, The 1420 Ma Indiavaí Mafic Intrusion (SW Amazonian Craton): Paleomagnetic results and implications for the Columbia supercontinent: Gondwana Research, 22, 956–973, doi: 10.1016/j.gr.2012.02.022.

D’Agrella-Filho., M.S., F. Bispo-Santos, R.I.F. Trindade, and P.Y.J. Antonio, 2016a, Paleomagnetism of the Amazonian Craton and its role in paleocontinents: Brazilian Journal of Geology, 46, 275–299, doi: 10.1590/2317-4889201620160055.

D’Agrella-Filho, M.S., R.I.F. Trindade, M.V.B. Queiroz, V.T. Meira, L. Janikian, A.S. Ruiz, and F. Bispo-Santos, 2016b, Reassessment of Aguapeí (Salto do Céu) Paleomagnetic pole, Amazonian Craton and implications for Proterozoic supercontinents: Precambrian Research, 272, 1–17, doi: 10.1016/j.precamres.2015.10.021.

D'Agrella-Filho, M.S., W. Teixeira, R.I.F. Trindade, O.A.L. Patroni, and R.F. Prieto, 2020, Paleomagnetism of 1.79 Ga Pará de Minas mafic dykes: testing a São Francisco/Congo-North China-Rio de la Plata connection in Columbia: Precambrian Research, 338, 105584, doi: 10.1016/j.precamres.2019.105584.

D’Agrella-Filho, M.S., P.Y.J. Antonio, R.I.F. Trindade, W. Teixeira, and F. Bispo-Santos, 2021, The Precambrian Drift History and Paleogeography of Amazonia, in Pesonen, L.J., J. Salminen, S.-Å. Elming, D.A.D. Evans, and T. Veikkolainen, Eds., Ancient Supercontinents and the Paleogeography of Earth: Elsevier, chapter 6, 207–241, doi: 10.1016/B978-0-12-818533-9.00010-2.

Dalla Salda, L.H., 1981, Tandilia, un ejemplo de tectónica de transcurrencia en basamento: Revista de la Asociación Geológica Argentina, 36, 2, 204–207.

Daly, M.C., S.R. Lawrence, K. Diemu-Tshiband, and B. Matouana, 1992, Tectonic evolution of the Cuvette Centrale, Zaire: Journal of the Geological Society of London, 149, 539–546, doi: 10.1144/gsjgs.149.4.0539.

Dalziel, I.W.D., 1992, On the organization of American plates in the Neoproterozoic and breakout of Laurentia: GSA Today, 2, 240–241.

Dalziel, I.W.D., 1994, Precambrian Scotland as a Laurentia-Gondwana link: Origin and significance of cratonic promontories: Geology, 22, 7, 589–592, doi: 10.1130/0091-7613(1994)022%3C0589:PSAALG%3E2.3.CO;2.

Dardenne, M.A., and C. Schobbenhaus, 2001, Metalogênese do Brasil. Editora UnB, Brasília, DF, Brazil, 394 pp.

De Kock, M.O., Evans, D.A.D., Beukes, N.J. 2009. Validating the existence of Vaalbara in the Neoarchean: Precambrian Research, 174, 145–154, doi: 10.1016/j.precamres.2009.07.002.

Delor, C., D. Lahondere, E. Egal, J.M. Lafon, A. Cocherie, C. Guerrot, P. Rossi, C. Truffert, H. Theveniaut, D. Phillips, and V.G. Avelar, 2003, Transamazonian crustal growth and reworking as revealed by the 1:500.000 – scale geological map of French Guiana, in Geologie de la France – Special Guiana Shield, 2nd ed., BRGM, SGF Editor, p. 5–58.

De Roever, E., U. Söderlund, W. Breecker, and M. Klaver, 2014, A precise U-Pb baddeleyite age for the Käiser dolerite swarm in Suriname: an exact age match with mafic dykes in West African Craton: Unpublished Report, A-178, 1–5. www.supercontinent.org.

De Waele, B., S.P. Johnson, and S.A. Pisarevsky, 2008, Palaeoproterozoic to Neoproterozoic growth and evolution of the eastern Congo craton: its role in the Rodinia puzzle: Precambrian Research, 160, 1-2, 127–141, doi: https://doi.org/10.1016/j.precamres.2007.04.020.

Dragone, G., Ussami, N., M.E. Gimenez, F.G. Lince Klinger, and C.A. Moreno Chaves, 2017, Western Paraná suture/shear zone and the limits of Rio Apa, Rio Tebicuary and Rio de la Plata cratons from gravity data: Precambrian Research, 291, 162–177, doi: 10.1016/j.precamres.2017.01.029.

Elming, S-?., M.S. D’Agrella-Filho, L.M. Page, E. Tohver, R.I.F. Trindade, I.I.G. Pacca, M.C. Geraldes, and W. Teixeira, 2009a, A palaeomagnetic and 40Ar/39Ar study of Late Precambrian sills in the SW part of the Amazonian Craton: Amazonia in the Rodinia reconstruction: Geophysical Journal International, 178, 106–122, doi: 10.1111/j.1365-246X.2009.04149.x.

Elming, S-?., M.O. Moakhar, P. Layer, and F. Donadini, 2009b, Uplift deduced from remanent magnetization of a proterozoic basic dyke and the baked country rock in the Hoting area, Central Sweden: a palaeomagnetic and 40Ar/39Ar study: Geophysical Journal Interiors, 179, 59–78, doi: 10.1111/j.1365-246X.2009.04265.x.

Ernst, R.C., and K.L. Buchan, 1993, Paleomagnetism of the Abitibi dyke swarm, southern Superior Province, and implications for the Logan Loop: Canadian Journal of Earth Sciences, 30, 9, 1886–1897, doi: 10.1139/e93-167.

Evans, D.A.D., 2013, Reconstructing pre-Pangean supercontinents: Geological Society of American Bulletin, 125, 1735–1751, doi: 10.1130/B30950.1.

Evans, D.A.D., and R.N. Mitchell, 2011, Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna: Geology, 39, 443–446, doi: 10.1130/G31654.1.

Evans, D.A.D., and S.A. Pisarevsky, 2008, Plate tectonics on early Earth? Weighing the paleomagnetic evidence, in Condie, K.C., Pease, V., Eds., When Did Plate Tectonics Begin on Planet Earth?: Geological Society America, Special Paper, 440, 249–263, doi: 10.1130/2008.2440(12).

Evans, D.A.D., R.I.F. Trindade, E.L. Catelani, M.S. D’Agrella-Filho, L.M. Heaman, E.P. Oliveira, U. Söderlund, R.E. Ernst, A.V. Smirnov, and J.M. Salminen, 2016, Return to Rodinia? Moderate to high paleolatitude of the São Francisco/Congo craton at 920 Ma, in Li, Z.X., D.A.D. Evans, and J.B. Murphy, Eds., Supercontinent Cycles Through Earth History: Geological Society of London, Special Publications, 424, 1, 167–190, doi: 10.1144/SP424.1.

Evans, D.A.D., L.J. Pesonen, B.M. Eglington, S.- ?. Elming, Z. Gong, Z.-X. Li, P.J. McCausland, J.G. Meert, S. Mertanen, S.A. Pisarevsky, A.F. Pivarunas, J. Salminen, N.L. Swanson-Hysell, T.H. Torsvik, R.I.F. Trindade, T. Veikkolainen, and S. Zhang, 2021, In: An expanding list of reliable paleomagnetic poles for Precambrian tectonic reconstructions, in Pesonen, L.J., J. Salminen, S.-Å. Elming, D.A.D. Evans, and T. Veikkolainen, Eds., Ancient Supercontinents and the Paleogeography of the Earth: Elsevier, chapter 19, pp. 605–639, doi: 10.1016/B978-0-12-818533-9.00007-2.

Fahrig W.F., K.W. Christie, and D.L. Jones, 1981, Paleomagnetism of the Bylot basins: evidence for MacKenzie continental tensional tectonics: Geological Survey of Canada, Paper 81-10, 303–312, doi: 10.4095/109368.

Favetto, A., C. Pomposiello, M.G. López de Luchi, and J. Booker, 2008, 2D Magnetotelluric interpretation of the crust electrical resistivity across the Pampean terrane-Río de la Plata suture, in central Argentina: Tectonophysics, 459, 1-4, 54–65, doi: 10.1016/j.tecto.2007.11.071.

Fernandes, C.M.D., C. Juliani, L.V.S. Monteiro, B. Lagler, and C.M. Echeverri-Misas, 2011, High-K calcalkaline to A-type fissure-controlled volcano-plutonism of the São Felix do Xingu region, Amazonian craton, Brazil: exclusively crustal sources or only mixed Nd model ages?: Journal of South American Earth Sciences, 32, 351–368, doi: 10.1016/j.jsames.2011.03.004.

Fraga, L.M.B., and N.J. Reis, 1996, A Reativação do Cinturão de Cisalhamento Guiana Central durante o Episódio K’Mudku: 39 Congresso Brasileiro de Geologia, SBG, Salvador, BA, Brazil, vol. 1, pp. 424–426.

Fraga, L.M., M.J.B. Macambira, R. Dall’Agnol, J.B.S. Costa, 2009, 1.94–1.93 Ga charnockitic magmatism from the central part of the Guyana Shield, Roraima, Brazil: Single-zircon evaporation data and tectonic implications: Journal of South American Earth Sciences, 27, 247–257, doi: 10.1016/j.jsames.2009.02.007.

Franceschinis, P.R., A.E. Rapalini, L. Sánchez Bettucci, C.M. Dopico, and F.N. Milanese, 2019, Paleomagnetic confirmation of the “unorthodox” configuration of Atlantica between 2.1 and 2.0 Ga: Precambrian Research, 334, 105447, doi: 10.1016/j.precamres.2019.105447.

Franceschinis, P.R., J.W. Afonso, M.J. Arrouy, L.E. Gómez-Peral, D. Poiré, R.I.F. Trindade, and A.E. Rapalini, 2022, Paleomagnetism of the Ediacaran Avellaneda Formation (Argentina), part I: Paleogeography of the Río de la Plata craton at the dawn of Gondwana: Precambrian Research, 383, 106909, doi: 10.1016/j.precamres.2022.106909.

Frisicale, M.C., 1999, Megacizalla en Boca de la Sierra, Tandilia: XIV Congreso Geológico Argentino, Actas, Salta, Argentina, 1, 168–171.

Ganade de Araújo, C.E.G., D. Rubatto, J. Hermann, U.G. Cordani, R. Caby, and M.A.S. Basei, 2014, Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana orogen: Nature Communications, 5, 5198, 1–8, doi: 10.1038/ncomms6198.

Gaudette, H.E., P.M. Hurley, A. Espejo, and E.H. Dahlberg, 1978, Older Guiana basement south of the Imataca Complex in Venezuela and in Suriname: Geological Society of America Bulletin, 89, 1290–1294, doi: 10.1130/0016-7606(1978)89%3C1290:OGBSOT%3E2.0.CO;2.

Gaucher, C., S.C. Finney, D.G. Poiré, V.A. Valencia, M. Grove, G. Blanco, K. Pamoukaghlián, and L. Gómez Peral, 2008, Detrital zircon ages of Neoproterozoic sedimentary successions in Uruguay and Argentina: Insights into the geological evolution of the Río de la Plata Craton: Precambrian Research, 167, 1-2, 150–170, doi: 10.1016/j.precamres.2008.07.006.

Geraldes, M.C., W.R. Van Schmus, K.C. Condie, S. Bell, W. Teixeira, and M. Babinski, 2001, Proterozoic geologic evolution of the SW part of the Amazonian Craton in Mato Grosso state, Brazil: Precambrian Research, 111, 91–128, doi: 10.1016/S0301-9268(01)00158-9.

Geraldes, M.C., J.S. Bettencourt, W. Teixeira, and J.M. Matos, 2004, Geochemistry and isotopic constraints on the origin of the Mesoproterozoic Rio Branco ‘anorogenic’ plutonic suite, SW of Amazonian craton, Brazil: high heat flow and crustal extension behind the Santa Helena arc?: Journal of South American Earth Sciences, 17, 195–208, doi: https://doi.org/10.1016/j.jsames.2004.05.010.

Gianotti, V., P. Oyhantçabal, J. Spoturno, and K. Wemmer, 2010, Caracterización Geológico-Estructural Y Estudio Microtectónico de las Zonas de Cizalla de Colonia: VI Congreso Uruguayo de Geología, Minas, Lavalleja, CD-ROM.

Girardi, V.A.V., P.C. Corrêa da Costa, and W. Teixeira, 2012, Petrology and Sr–Nd characteristics of the Nova Lacerda dike swarm, SW Amazonian Craton: new insights regarding its subcontinental mantle source and Mesoproterozoic geodynamics: International Geology Review, 54, 2, 165–182, doi: 10.1080/00206814.2010.510238.

Girelli, T.J., F.Chemale Jr., E.L.C. Lavina, J.H. Laux, E.M. Bongiolo, and C. Lana, 2018, Granulite accretion to Rio de la Plata Craton, based on zircon U-Pb-Hf isotopes: tectonic implications for Columbia Supercontinent reconstruction: Gondwana Research, 56, 105–118, doi: 10.1016/j.gr.2017.12.010.

Gómez Peral, L.E., A.N. Sial, M.J. Arrouy, S. Richiano, V.P. Ferreira, A.J. Kaufman, and D.G. Poiré, 2017, Paleoclimatic and paleoenvironmental evolution of the early Neoproterozoic basal dolomitic platform, Río de La Plata Craton, Argentina: insights from the ?13C chemostratigraphy: Sedimentary Geology, 353, 139–157, doi: 10.1016/j.sedgeo.2017.03.007.

Gómez Peral, L.E., A.J. Kaufman, M.J. Arrouy, S. Richiano, A.N. Sial, D.G. Poiré, and V.A. Ferreira, 2018, Preglacial palaeoenvironmental evolution of the Ediacaran Loma Negra formation, far southwestern Gondwana, Argentina: Precambrian Research, 315, 120–137, doi: 10.1016/j.precamres.2018.07.005.

Gómez Peral, L., J. Arrouy, D.G. Poiré, and C.E. Cavarozzi, 2019, Redox-sensitive trace element distribution in the Loma Negra Formation in Argentina: The record of an Ediacaran oxygenation event: Precambrian Research, 332, 105384, doi: 10.1016/j.precamres.2019.105384.

Grenholm, M., 2019, The global tectonic context of the ca. 2.27-1.96 Ga Birimian Orogen – Insights from comparative studies, with implications for supercontinent cycles: Earth-Science Reviews, 193, 260–298, doi: 10.1016/j.earscirev.2019.04.017.

Halls, H.C., N. Campal, D.W. Davis, and J. Bossi, 2001, Magnetic studies and U-Pb geochronology of the Uruguayan dyke swarm, Rio de la Plata craton, Uruguay: Paleomagnetic and economic implications: Journal of South American Earth Sciences, 14, 4, 349–361, doi: 10.1016/S0895-9811(01)00031-1.

Hamilton, M.A., and K.L. Buchan, 2010, U–Pb geochronology of the Western Channel Diabase, northwestern Laurentia: Implications for a large 1.59 Ga magmatic province, Laurentia’s APWP and paleocontinental reconstructions of Laurentia, Baltica and Gawler craton of southern Australia: Precambrian Research, 183, 463–473, doi: 10.1016/j.precamres.2010.06.009.

Hartmann, L.A., J.O.S. Santos, C.A. Cingolani, and N.J. McNaughton, 2002, Two paleoproterozoic orogenies in the evolution of the Tandilia Belt, Buenos Aires, as evidenced by zircon U-Pb SHRIMP geochronology: International Geology Review, 44, 6, 528–543, doi: 10.2747/0020-6814.44.6.528.

Hartmann, L.A., J. Bossi, J.O.S. Santos, N.J. McNaughton, and D. Piñeiro, 2008, Geocronología U-Pb SHRIMP en circones del Gabro Rospide en El Cinturón paleo Proterozoico San José, Terreno Piedra Alta, Uruguay: una prueba geocronológica de magmas coetáneos: Revista Sociedad Uruguaya de Geología, 15, 40–53.

Hawkesworth, C.J., B. Dhuime, A.B. Pietranik, P.A. Cawood, A.I.S. Kemp, and C.D. Storey, 2010, The generation and evolution of the continental crust: Journal of the Geological Society, London, 167, 229–248, doi: 10.1144/0016-76492009-072.

Heilbron, M., B.P. Duarte, C.M. Valeriano, A. Simonetti, N. Machado, and J.R. Nogueira, 2010, Evolution of reworked Paleoproterozoic basement rocks within the Ribeira belt (Neoproterozoic), SE-Brazil, based on U-Pb geochronology: implications for paleogeographic reconstructions of the São Francisco-Congo paleocontinent: Precambrian Research, 178, 136–148, doi: 10.1016/j.precamres.2010.02.002.

Heinonen, A.P., L.M. Fraga, O.T. Rämö, R. Dall'Agnol, I. Mänttäri, and T. Andersen, 2012, Petrogenesis of the igneous Mucajaí AMG complex, northern Amazonian craton — Geochemical, U–Pb geochronological, and Nd–Hf–O isotopic constraints: Lithos ,151, 17–34, doi: 10.1016/j.lithos.2011.07.016.

Hoffman, P.F., 1991, Did the breakout of Laurentia turn Gondwanaland inside-out?: Science 252, 1409–1412, doi: 10.1126/science.252.5011.1409.

Hou, G., M. Santosh, X. Qian, G.S. Lister, and J. Li, 2008a, Tectonic constraints on 1.3~1.2 Ga final breakup of Columbia supercontinent from a giant radiating dyke swarm: Gondwana Research, 14, 561–566, doi: 10.1016/j.gr.2008.03.005.

Hou, G., M. Santosh, X. Qian, G.S. Lister, J. Li, 2008b, Configuration of the Late Paleoproterozoic supercontinent Columbia: Insights from radiating mafic dyke swarms: Gondwana Research, 14, 395–409, doi: 10.1016/j.gr.2008.01.010.

Hu, Y., X. Zhao, P. Peng, F. Yang, M.S. D’Agrella-Filho, W. Chen, M. Xu, 2022, Paleomagnetic constraints from 925 Ma mafic dykes in North China and Brazil: Implications for the paleogeography of Rodinia: Journal of Geophysical Research, Solid Earth, 127, e2022JB025079, 1–22, doi: https://doi.org/10.1029/2022JB025079.

Ibañez–Mejia, M., 2020, The Putumayo Orogen of Amazonia: A synthesis, in Gómez, J., and D. Mateus–Zabala, Eds., The Geology of Colombia: Volume 1, Proterozoic – Paleozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 35, p. 101–131. Bogotá.

Ibañez-Mejia, M., J. Ruiz, V.A. Valencia, A. Cardona, G.E. Gehrels, and A.R. Mora, 2011, The Putumayo Orogen of Amazonia and its implications for Rodinia reconstructions: New U-Pb geochronological insights into the Proterozoic tectonic evolution of northwestern South America: Precambrian Research, 191, 58–77, doi: 10.1016/j.precamres.2011.09.005.

Irving E., and A.J. Naldrett, 1977, Paleomagnetism in Abitibi greenstone belt, and Abitibi and Matachewan diabase dykes: evidence of the Archean geomagnetic field: The Journal of Geology, 85, 157-176, doi: https://doi.org/10.1086/628283.

Johansson, A., 2009, Baltica, Amazonia and the SAMBA connection—1000 million years of neighbourhood during the Proterozoic?: Precambrian Research, 175, 221–234, doi: 10.1016/j.precamres.2009.09.011.

Johansson, A., 2014, From Rodinia to Gondwana with the ‘SAMBA’ model – a distant view from Baltica towards Amazonia and beyond: Precambrian Research, 244, 226–235, doi: 10.1016/j.precamres.2013.10.012.

Johnson, S. P., and G.J.H. Oliver, 2000, Mesoproterozoic oceanic subduction, island-arc formation and the initiation of back-arc spreading in the Kibaran Belt of central, southern Africa: evidence from the Ophiolite Terrane, Chewore Inliers, northern Zimbabwe: Precambrian Research, 103, 125–146, doi: 10.1016/S0301-9268(00)00075-9.

Kah, L.C., T.W. Lyons, and J.T. Chesley, 2001, Geochemistry of a 1.2 Ga carbonate- evaporate succession, northern Baffin and Bylot Islands: implications for Mesoproterozoic marine evolution: Precambrian Research, 111, 203–234, doi: https://doi.org/10.1016/S0301-9268(01)00161-9.

Kirscher, U., Y. Liu, Z.X. Li, R.N. Mitchell, S.A. Pisarevsky, S.W. Denyszyn, and A. Nordsvan, 2019, Paleomagnetism of the Hart Dolerite (Kimberley, Western Australia) – A two-stage assembly of the supercontinent Nuna?: Precambrian Research, 329, 170–181, doi: 10.1016/j.precamres.2018.12.026.

Klein, E.L., M.E. Almeida, L.T. Rosa-Costa, 2012, The 1.89-1.87 Ga Uatumã Silicic Large Igneous Province, northern South America: Large Igneous Provinces Commission. http://www. largeigneousprovinces.org, November 2012.

Krogh T.E., F. Corfu, D.W. Davis, G.R. Dunning, L.M. Heaman, S.L. Kamo, N. Machado, J.D. Greenough, and E. Nakamura, 1987, Precise U-Pb isotopic ages of diabase dyke and mafic to ultramafic rocks using trace amounts of baddeleyite and zircon, in H.C. Halls and W.F. Fahrig, Eds., Mafic dyke swarms: Geological Association of Canada, Special Paper, 34, p. 147–152.

Kröner, T.M., and U.G. Cordani, 2003, African, southern India and South American cratons were not part of the Rodinia supercontinent: evidence from field relationships and geochronology: Tectonophysics, 375, 325–352, doi: 10.1016/S0040-1951(03)00344-5.

Kroonenberg, S.B., E.W.F. De Roever, L.M. Fraga, N.J. Reis, M.T. Faraco, J.-M. Lafon, U. Cordani, T.E. Wong, 2016, Paleoproterozoic evolution of the Guiana Shield in Suriname: a revised model: Geologie en Mijnbouw, 94, 4, 491–522, doi: 10.1017/njg.2016.10.

Lacerda Filho, J.V., W. Abreu Filho, C.R. Valente, C.C. Oliveira, and M.C. Albuquerque, 2004, Geologia e Recursos Minerais do Estado de Mato Grosso. Texto explicativo dos mapas geológico e de recursos minerais do Estado de Mato Grosso, 1:1.000.000, Convênio CPRM / SICME-MT 235 p.

Leite, J.A.D., and G.S. Saes, 2003, Geocronologia Pb/Pb de Zircões Detríticos e Análise Estratigráfica das Coberturas Sedimentares Proterozóicas do Sudoeste do Cráton Amazônico: Geologia USP, Série Científica, 3, 113–127, doi: 10.5327/S1519-874X2003000100009.

Li, L., S. Lin, G. Xing, Y. Jiang, and J. He, 2017, First Direct Evidence of Pan-African Orogeny Associated with Gondwana Assembly in the Cathaysia Block of Southern China: Scientific Reports, 7, 794, doi: 10.1038/s41598-017-00950-x.

Li, Z.X., D.A.D. Evans, and S. Zhang, 2004, A 90° spin on Rodinia: possible causal links between the Newproterozoic supercontinent, superplume, true polar wander and low-latitude glaciation: Earth and Planetary Science Letters, 220, 3-4, 409–421, doi: 10.1016/S0012-821X(04)00064-0.

Li, Z.X., S.V. Bogdanova, A.S. Collins, A. Davidson, B. De Waele, R.E. Ernst, I.C.W. Fitzsimons, R.A. Fuck, D.P. Gladkochub, J. Jacobs, K.E. Karlstrom, S. Lu, L.M. Natapov, V. Pease, S.A. Pisarevsky, K. Thrane, and V. Vernikovsky, 2008, Assembly, configuration, and break-up history of Rodinia: A synthesis: Precambrian Research, 160, 179–210, doi: 10.1016/j.precamres.2007.04.021.

Li, Z.X., Y. Liu, and R. Ernst, 2023, A dynamic 2000—540 Ma Earth history: From cratonic amalgamation to the age of supercontinent cycle: Earth-Science Reviews, 238, 104336, doi: 10.1016/j.earscirev.2023.104336.

Lima, G.A., J.B. Macambira, M.Z.A. Sousa, A.S. Ruiz, and M.S. D’Agrella-Filho, 2019, Fissural mafic magmatism on southwestern Amazonian Craton: Petrogenesis and 40Ar-39Ar geochronology: Journal of South American, Earth Sciences, 93, 214–231, doi: 10.1016/j.jsames.2019.04.004.

Litherland, M., R.N. Annells, D.P.F. Darbyshire, C.J.N. Fletcher, M.P. Hawkins, B.A. Klinck, W.I. Mitchell, E.A. O’Connor, P.E.J. Pitfield, G. Power, and B.C. Webb, 1989, The Proterozoic of Eastern Bolivia and its relationship to the Andean mobile belt: Precambrian Research, 43, 157–174, doi: 10.1016/0301-9268(89)90054-5.

Loewy, S.L., J.N. Connelly, I.W.D. Dalziel, and C.F. Gower, 2003, Eastern Laurentia in Rodinia: Constraints from whole-rock Pb and U-Pb geochronology, in Sircombe, K.N., McElhinny, M.W.(Eds). Orogenic belts, regional and global tectonics: A memorial volume to Chris McAulay Powell: Tectonophysics, 375, 169–197, doi: 10.1016/S0040-1951(03)00338-X.

Lubnina, N.V., S. Mertanen, U. Söderlund, S. Bogdanova, T.I. Vasilieva, and D. Frank-Kamenetsky, 2010, A new key pole for the East European Craton at 1452 Ma: palaeomagnetic and geochronological constraints from mafic rocks in the Lake Ladoga region (Russian Karelia): Precambrian Research, 183, 442–462, doi: 10.1016/j.precamres.2010.02.014.

Luppo, T., C.I. Martínez Dopico, A.E. Rapalini, M.G. López de Luchi, M. Miguez, and C.M. Fanning, 2019, Paleomagnetism of Permo-Triassic volcanic units in northern Patagonia: Are we tracking the final stages of collision of Patagonia?: International Journal of Earth Sciences, 108, 2, 621–647, doi: 10.1007/s00531-018-01672-9.

Marchese, H.G., and E. Di Paola, 1975, Miogeosinclinal Tandil: Revista de la Asociación Geológica Argentina, 30, 161–179.

Martin-Bellizzia, C.M., 1972, Paleotectonica del Escudo de Guayana: Conferencia Geológica Interguyanas, 9, Puerto Ordaz, Memoria, 6, pp. 251–305.

Martins, P.L.G., C.L.B. Toledo, A.M. Silva, P.Y.J. Antonio, F. Chemale Jr., L.M. Assis, and R.I.F. Trindade, 2021, Low paleolatitude of the Carajás Basin at ~2.75 Ga: Paleomagnetic evidence from basaltic flows in Amazonia: Precambrian Research, 365, 106411, doi: 10.1016/j.precamres.2021.106411.

McGee, B., A.S. Collins, and R.I.F. Trindade, 2012, G’day Gondwana – the final accretion of a supercontinent: U-Pb ages from the post-orogenic São Vicente Granite, northern Paraguay Belt, Brazil: Gondwana Research, 21, 316–322, doi: 10.1016/j.gr.2011.04.011.

McGee, B., A.S. Collins, R.I.F. Trindade, and F. Jourdan, 2015a, Investigating mid-Ediacaran glaciation and final Gondwana amalgamation using coupled sedimentology and 40Ar-39Ar detrital muscovite provenance from the Paraguay Belt, Brazil: Sedimentology, 62, 130–154, doi: 10.1111/sed.12143.

McGee, B., A.S. Collins, R.I. Trindade, and J. Payne, 2015b, Age and provenance of the Cryogenian to Cambrian passive margin to foreland basin sequence of the northern Paraguay Belt, Brazil: Geological Society of America Bulletin, 127, 1-2, 76–86, doi: 10.1130/B30842.1.

McMenamim, M.A.S., and D.L.S. McMenamim, 1990, The emergence of animals: the Cambrian breakthrough: Columbia University Press, New York, 217 p.

Meert, J.G., 2002, Paleomagnetic evidence for a Paleo-Mesoproterozoic Supercontinent ‘Columbia’: Gondwana Research, 5, 207–215, doi: 10.1016/S1342-937X(05)70904-7.

Meert, J.G., 2012, What’s the name? The Columbia (Paleopangea/Nuna) supercontinent: Gondwana Research, 21, 987–993, doi: 10.1016/j.gr.2011.12.002.

Meert, J.G., Torsvik, T.H., 2003, The making and unmaking of a supercontinent: Rodinia revisited: Tectonophysics, 375, 261–288, doi: 10.1016/S0040-1951(03)00342-1.

Meert, J.G., Santosh, M., 2017. The Columbia supercontinent revisited: Gondwana Research, 50, 67–83, doi: 10.1016/j.gr.2017.04.011.

Meert, J.G., Pivarunas, A.F., Evans, D.A.D., Pisarevsky, S.A., Pesonen, L.J., Li, A.-X., Elming, S.-?., Miller, S.R., Zhang, S., Salminen, J.M., 2020. The magnificent seven: A proposal for modest revision of the Van der Voo (1990) quality index: Tectonophysics, 790, 228549, doi: 10.1016/j.tecto.2020.228549.

Milhomem Neto, J.M., J. Marinho, and J.-M. Lafon, 2019, Zircon U-Pb and Lu-Hf isotope constraints on Archean crustal evolution in Southeastern Guyana Shield: Geoscience Frontiers, 10, 1477–1506, doi: 10.1016/j.gsf.2018.09.012.

Mitchell, R.N., W. Bleeker, O. van Breemen, T.N. Lecheminant, P. Peng, M.K.M. Nilsson, and D.A.D. Evans, 2014, Plate tectonics before 2.0 Ga: Evidence from Paleomagnetism of cratons within Supercontinent Nuna: American Journal of Science, 314, 878–894, doi: 10.2475/04.2014.03.

Mitchell, R.N., T.M. Kilian, T.D. Raub, D.A.D. Evans, M. Bleeker, and A.C. Maloof, 2011, Sutton hotspot: Resolving Ediacaran-Cambrian tectonics and true polar wander for Laurentia: American Journal of Science, 311, 651–663, doi: 10.2475/08.2011.01.

Mitchell, R.N., T.M. Kilian, and D.A.D. Evans, 2012, Supercontinent cycles and the calculation of absolute palaeolongitude in deep time: Nature, 482, 7384, 208–211, doi: 10.1038/nature10800.

Nance, R.D., J.B. Murphy, and M. Santosh, 2014, The supercontinent cycle: A retrospective essay: Gondwana Research, 25, 4–29, doi: 10.1016/j.gr.2012.12.026.

Noce, C.M., A.C. Pedrosa-Soares, L.C. Silva, R. Armstrong, and D. Piuzana, 2007, Evolution of polycyclic basement in the Araçuaí Orogen based on U-Pb SHRIMP data: implications for the Brazil-Africa links in the Paleoproterozoic time: Precambrian Research, 159, 60–78, doi: https://doi.org/10.1016/j.precamres.2007.06.001.

Nomade, S., Y. Chen, A. Pouclet, G. Féraud, H. Théveniaut, B.Y. Daouda, M. Vidal, and C. Rigolet, 2003, The Guiana and West African Shield Palaeoproterozoic grouping: new palaeomagnetic data for French Guiana and Ivory Coast: Geophysical Journal International, 154, 677–694, doi: 10.1046/j.1365-246X.2003.01972.x.

Oliveira, E.P., B.F. Windley, N.J. McNaughton, M. Pimentel, and I.R. Fletcher, 2004, Contrasting copper and chromium metallogenic evolution of terranes in the Palaeoproterozoic Itabuna-Salvador-Curaçá Orogen, São Francisco Craton, Brazil: new zircon (SHRIMP) and Sm-Nd (model) ages and their significance for orogen-parallel escape tectonics: Precambrian Research, 128, 143–165, doi: 10.1016/j.precamres.2003.09.018.

Onstott, T.C., and R.B. Hargraves, 1981, Proterozoic transcurrent tectonics: palaeomagnetic evidence from Venezuela and Africa: Nature, 289, 131–136, doi: 10.1038/289131a0.

Onstott, T.C., C.M. Hall, and D. York, 1989, 40Ar/39Ar Thermochronometry of the Imataca Complex, Venezuela: Precambrian Research, 42, 255–291, doi: 10.1016/0301-9268(89)90014-4.

Oriolo, S., P. Oyhantçabal, K. Wemmer, and S. Siegesmund, 2017, Contemporaneous assembly of Western Gondwana and final Rodinia breakup: Implications for the supercontinent cycle: Geosciencie Frontiers, 8, 6, 1431–1445, doi: 10.1016/j.gsf.2017.01.009.

Oyhantçabal, P., K. Wemmer, and S. Siegesmund, 2006, K/Ar Geocronology of the Mosquitos Shear Zone (Piedra Alta Terrane-Río de la Plata Craton-Uruguay): V South American Symposium on Isotope Geology, Punta del Este, short paper, p. 149.

Oyhantçabal, P., I. Suarez, N. Seluchi, X. Martinez, 2010, Análisis Microtectónico de las Milonitas del Extremo Sur de la Zona de Cizalla Sarandí del Yí: Cinemática y Condiciones de Deformación. Acts VI Congreso Uruguayo de Geología. Minas, Lavalleja, CD-ROM.

Oyhantçabal, P., S. Siegesmund, and K.Wemmer, 2011, The Río de la Plata Craton: A review of units, boundaries, ages and isotopic signature: International Journal of Earth Science, 100, 2-3, 201–220, doi: 10.1007/s00531-010-0580-8.

Oyhantçabal, P., C.A. Cingolani, K. Wemmer, S. Siegesmund, 2018, The Río de la Plata Craton of Argentina and Uruguay. In: Siegesmund, S., Basei, M.A.S., Oyhantçabal, P., Oriolo, S., Eds., Geology of Southwest Gondwana, Regional Geology Reviews. Springer International Publishing, Cham, pp. 89–105, doi: 10.1007/978-3-319-68920-3_4.

Pamoukaghlián, K., C. Gaucher, R. Frei, D.G. Poiré, F. Chemale, D. Frei, T.M. Will, 2017, U-Pb age constraints for the La Tuna Granite and Montevideo Formation (Paleoproterozoic, Uruguay): unravelling the structure of the Río de la Plata Craton: Journal of South American Earth Sciences, 79, 443–458, doi: 10.1016/j.jsames.2017.09.004.

Payolla, B.L., J.S. Bettencourt, M. Kozuch, W.B. Leite, A.H. Fetter, and W.R. Van Schmus, 2002, Geological evolution of the basement rocks in the east-central part of the Rondônia Tin Province, SW Amazonian Craton, Brazil: U-Pb and Sm–Nd isotopic constraints: Precambrian Research, 119, 141–169, doi: 10.1016/S0301-9268(02)00121-3.

Peel, E., and F. Preciozzi, 2006, Geochronologic synthesis of the Piedra Alta Terrane: V South American Symposium on Isotope Geology, Punta del Este, Uruguay, 1, p. 234–237.

Pehrsson, S.J., B.M. Eglington, D.A.D. Evans, D. Huston, and S.M. Reddy, 2016, Metallogeny and its link to orogenic style during the Nuna supercontinent cycle. In: Li, Z.X., D.A.D. Evans, J.B. Murphy, Eds., Supercontinent Cycles Through Earth History: Geological Society, London, Special Publications, 424, 83–94, doi: 10.1144/SP424.5.

Peng, P., 2015, Precambrian mafic dyke swarms in the North China Craton and their geological implications: Science China Earth Sciences, 58, 649–675, doi: 10.1007/s11430-014-5026-x.

Peng, P., Bleeker, W., Ernst, R.E., Söderlund, U., McNicoll, V., 2011. U-Pb baddeleyite ages, distribution and geochemistry of 925 Ma mafic dykes and 900 Ma sills in the North China craton: evidence for a Neoproterozoic mantle plume: Lithos, 127, 210–221, doi: 10.1016/j.lithos.2011.08.018.

Peri, V.G., Pomposiello, M.C., Favetto, A., Barcelona, H., Rossello, E.A., 2013. Magnetotelluric evidence of the tectonic boundary between the Río de La Plata Craton and the Pampean terrane (Chaco-Pampean Plain, Argentina): The extension of the Transbrasiliano Lineament: Tectonophysics 608, 685–699, doi: 10.1016/j.tecto.2013.08.012.

Peri, V.G., H. Barcelona, M.C. Pomposiello, A. Favetto, 2015. Magnetotelluric characterization through the Ambargasta-Sumampa Range: The connection between the northern and southern trace of the Río de La Plata Craton-Pampean Terrane tectonic boundary: Journal of South American Earth Sciences 59, 1–12, doi: https://doi.org/10.1016/j.jsames.2015.01.003.

Pesonen, L.J., Elming, S.-Å., Mertanen, S., Pisarevsky, S., M.S. D’Agrella-Filho, J.G. Meert, P.W. Schmidt, N. Abrahamsen, and G. Bylund, 2003, Palaeomagnetic configuration of continents during the Proterozoic: Tectonophysics, 375, 289–324, doi: 10.1016/S0040-1951(03)00343-3.

Piper, J.D.A., 2010, Protopangea: Palaeomagnetic definition of Earth´s oldest (mid-Archaean-Palaeoproterozoic) supercontinent: Journal of Geodynamics, 50, 154–165, doi: 10.1016/j.jog.2010.01.002.

Piper, J.D.A., 2018, Dominant lid tectonics behaviour of continental lithosphere in Precambrian times: Palaeomagnetism confirms prolonged quasi-integrity and absence of supercontinent cycles: Geoscience Frontiers, 9, 61–89, doi: 10.1016/j.gsf.2017.07.009.

Pisarevsky, S.A., and Bylund, G. 2010, Paleomagnetism of 1780–1770 Ma mafic and composite intrusions of Småland (Sweden): Implications for the Mesoproterozoic Supercontinent: American Journal of Science, 310, 1168–1186, doi: 10.2475/09.2010.15.

Pisarevsky S.A., M.T.D. Wingate, C. Powell, S. Johnson, and D.A.D. Evans, 2003, Models of Rodinia assembly and fragmentation, in Yoshida M., Windley, B.F., Dasgupta, S., Eds., Proterozoic East Gondwana: Supercontinent Assembly and Breakup: Geological Society, London, Special Publications 206, 35–55, doi: 10.1144/GSL.SP.2003.206.01.04.

Pisarevsky, S.A., S.-Å. Elming, L.J. Pesonen, Z.X. Li, 2014, Mesoproterozoic paleogeography: Supercontinent and beyond: Precambrian Research, 244, 207–225, doi: 10.1016/j.precamres.2013.05.014.

Pradhan, V.R., J.G., Meert, M.K. Pandit, G. Kamenov, Md.E.A Mondal,., 2012, Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India: implications for the tectonic evolution and paleogeographic reconstructions: Precambrian Research, 198–199, 51–76, doi: 10.1016/j.precamres.2011.11.011.

Preciozzi, F., and J.H. Bourne, 1993, Geochemistry and geochronology of three plutons from central Uruguay; tectonic implications for the Transamazonian Orogeny: Brazilian Journal of Geology, 23, 3, 52–60, doi: 10.25249/0375-7536.19932315260.

Preciozzi, F., M.A.S.Basei, and H. Masquelin, 1999, New geochronological data from the Piedra Alta terrane (Río de la Plata Craton): II South American Symposium on Isotope Geology, Córdoba, Argentina, p. 341–343.

Priem, H.N.A., N.A.I.M. Boelrijk, E.H. Hebeda, E.A.Th. Verdurmen, and R.H. Verschure, 1971, Isotopic ages of the Trans-Amazonian Acidic magmatism and the Nickerie Metamorphic Episode in the Precambrian Basement of Suriname, South America: Geological Society of America Bulletin, 82, 1667–1680, doi: 10.1130/0016-7606(1971)82[1667:IAOTTA]2.0.CO;2.

Ramé, G., and R. Miró , 2011, Modelo geofísico de contacto entre el Orógeno Pampeano y el Cratón del Río de La Plata en las provincias de Córdoba y Santiago del Estero: Serie Correlación Geológica 27, 2, 111–123.

Ramos, V.A., 2008. Patagonia: A Paleozoic continent adrift?: Journal of South American Earth Sciences, 26, 3, 235–251, doi: 10.1016/j.jsames.2008.06.002.

Ramos, V.A., A. Leguizamón, S.M. Kay, M. Teruggi, 1990, Evolución tectónica de las sierras de Tandil (provincia de Buenos Aires): XI Congreso Geológico Argentino, San Juan, 11, 357–360.

Rapalini, A.E., Sánchez Bettucci, L., Badgen, E., Vasquez, C.A., 2015. Paleomagnetic study on mid-Paleoproterozoic rocks from the Rio de la Plata craton: implications for Atlantica: Gondwana Research, 27, 4, 1534–1549, doi: 10.1016/j.gr.2014.01.012.

Rapalini, A.E., P.R. Franceschinis, L. Sánchez Bettucci, J. Arrouy, and D.G. Poiré, 2021. The Precambrian drift history and paleogeography of Río de la Plata craton, in Pesonen, L.P., J. Salminen, S.-Å. Elming, D.A.D. Evans, and T. Veikkolainen, Eds., Ancient Supercontinents and the Paleogeography of the Earth. Elsevier, Chapter 7 - p. 243–261, doi: 10.1016/B978-0-12-818533-9.00002-3.

Rapela, C.W., R.J. Pankhurst, C. Casquet, C.M. Fanning, E.G. Baldo, J.M. González-Casado, C. Galindo, and J. Dahlquist, 2007, The Rio de la Plata craton and the assembly of SW Gondwana: Earth Science Reviews, 83, 1-2, 49–82, doi: 10.1016/j.earscirev.2007.03.004.

Rapela, C.W., C.M. Fanning, C. Casquet, R.J. Pankhurst, L. Spalletti, D. Poiré, and E.G. Baldo, 2011, The Rio de la Plata craton and the adjoining Pan-African/Brasiliano terranes: their origins and incorporation into south-west Gondwana: Gondwana Research, 20, 4, 673–690, doi: 10.1016/j.gr.2011.05.001.

Reis, N.J., L.M.B. Fraga, M.S.G. Faria, and M.E. Almeida, 2003, Geologia do Estado de Roraima, Brasil: Geology of France and Surrounding Areas – Special Guiana Shield, BRGM, n. 2-3-4, p. 121–134.

Reis, N.J., W. Teixeira, M.A. Hamilton, F. Bispo-Santos, M.E. Almeida, M.S. D’Agrella-Filho, 2013, Avanavero mafic magmatism, a late Paleoproterozoic LIP in the Guiana Shield, Amazonian Craton: U-Pb ID-TIMS baddeleyite, geochemical and paleomagnetic evidence: Lithos, 174, 175–195, doi: 10.1016/j.lithos.2012.10.014.

Reis, N.J., W. Teixeira, M.S. D’Agrella-Filho, R.E. Bettencourt, L.E. Ernst, L.E. Goulart, 2022, Large Igneous Provinces of the Amazonian Craton and their Metallogenic Potential in Proterozoic Times, in Srivastava, R.K., R.E. Ernst, K.L. Buchan, and M. De Cock, Eds., Large Igneous Provinces and their Plumbing Systems. Geological Society of London, Special Publications, 518, 493–529, doi: https://doi.org/10.1144/SP518-2021-7.

Rizzotto, G.J., 1999. Petrologia e geotectônica do Grupo Nova Brasilândia, Rondônia (MSc. Dissertation). Federal University of Rio Grande do Sul. Porto Alegre, RS, Brazil, p. 131.

Rizzotto, G.J., and L.A. Hartmann, 2012, Geological and geochemical evolution of the Trincheira Complex, a Mesoproterozoic ophiolite in the southwestern Amazon craton, Brazil: Lithos. 148, 277–295, doi: https://doi.org/10.1016/j.lithos.2012.05.027.

Rizzotto, G.J., E.F. Lima, and F. Chemale Junior, 2001, Geologia do Grupo Nova Brasilândia, sudeste de Rondônia, acresção continental e implicações geotectônicas, in Reis, N.J., and M.A.S. Monteiro, M.A.S., Eds., Contribuições à geologia da Amazônia: SBG, Manaus, AM, Brazil, vol. 2, pp 342–442.

Rizzotto, G.J., J.S. Bettencourt, W. Teixeira, I.G. Pacca, M.S. D’Agrella-Filho, P.M.P. Vasconcelos, M.A.S. Basei, and A.T. Onoe, 2002, Geologia e geocronologia da Suíte Metamórfica Colorado e suas encaixantes SE de Rondônia: implicações para a evolução mesoproterozóica do SW do Cráton Amazônico: Geologia USP, Série Científica, 2, 41–55, doi: 10.5327/S1519-874X2002000100006.

Rizzotto, G.J., J.O.S. Santos, L.A. Hartmann, E. Tohver, M.M. Pimentel, and N.J. McNaughton, 2013, The Mesoproterozoic Guaporé suture in the SW Amazonian craton: geotectonic implications based on field geology, zircon geochronology and Nd-Sr isotopic geochemistry: Journal of South American Earth Sciences, 48, 271–295, doi: 10.1016/j.jsames.2013.10.001.

Rizzotto, G.J., L.A. Hartmann, N.J. Santos, and J.O.S. McNaughton, 2014, Tectonic evolution of the southern margin of the Amazonian craton in the late Mesoproterozoic based on field relationships and zircon U-Pb geochronology: Anais da Academia Brasileira de Ciências, 86, 57–84, doi: 10.1590/0001-37652014104212.

Rizzotto, G.J., C.L. Alves, F.S. Rios, and M.A.S. Barros, 2019, The Western Amazonia Igneous Belt: Journal of South American Earth Sciences, 96, 102326, doi: 10.1016/j.jsames.2019.102326.

Robert, B., J. Besse, O. Blein, M. Greff-Lefftz, T. Baudin, F. Lopes, S. Meslouh, and M. Belbadaoui, 2017, Constraints on the Ediacaran inertial interchange true polar wander hypothesis: A new paleomagnetic study in Morocco (West African Craton): Precambrian Research, 295, 90–116, doi: 10.1016/j.precamres.2017.04.010.

Robert, B., M. Greff-Lefftz, and J. Besse, 2018, True polar wander: A key indicator for plate configuration and mantle convection during the late Neoproterozoic: Geochemistry, Geophysics, Geosystems, 19, 9, 3478–3495, doi: 10.1029/2018GC007490.

Rogers, J.J., 1996, A history of continents in the past three billion years: The Journal of Geology, 104, 1, 91–107, doi: 10.1086/629803.

Rogers, J.J.W., and M. Santosh, 2002, Configuration of Columbia, a Mesoproterozoic Supercontinent: Gondwana Research, 5, 5–22, doi: 10.1016/S1342-937X(05)70883-2.

Rogers, J., and M. Santosh, 2004, Continents and Supercontinents: Oxford University Press, New York, 289 pp, doi: 10.1093/oso/9780195165890.003.0013.

Rossello, E.A., G. Veroslavsky, H. De Santa Ana, V.J. Fúlfaro, and C.A.F. Fernández Garrasino, 2006, La Dorsal Asunción-Río Grande: Un Alto fondo regional entre las cuencas Paraná (Brasil, Paraguay y Uruguay) y Chacoparanaense (Argentina): Revista Brasileira de Geociências, 36, 3, 535–549, doi: 10.25249/0375-7536.2006363535549.

Rossello, E.A., G. Veroslavsky, H. de Santa Ana, and P. Rodriguez, 2017, Depocentros mesocenozoicos y rasgos tectonicos del basamento cristalino del Rio de la Plata (Argentina y Uruguay): Revista de la Asociación Geológica Argentina 74, 3, 283–294.

Ruiz, A.S., 2005, Evolução geológica do sudoeste do Craton Amazônico, região limítrofe Brasil-Bolivia-Mato Grosso: Doctoral Thesis, Universidade Estadual de São Paulo, Rio Claro, SP, Brazil, 260 p.

Sadowski, G.R., and J.S. Bettencourt, 1996, Mesoproterozoic tectonic correlations between eastern Laurentia and the western border of the Amazon Craton: Precambrian Research, 76, 213–227, doi: 10.1016/0301-9268(95)00026-7.

Saes, G.S., and J.D. Leite, 1993, Evolução tectono-sedimentar do Grupo Aguapeí, Proterozoico Médio, na porção meridional do Cráton Amazônico: Mato Grosso e Oriente Boliviano: Revista Brasileira de Geociências, 23, 31–37, doi: 10.25249/0375-7536.19932313137.

Salminen, J., and L.J. Pesonen, 2007, Paleomagnetic and rock magnetic study of the Meso-proterozoic sill, Valaam island, Russian Karelia: Precambrian Research, 159, 212–230, doi: 10.1016/j.precamres.2007.06.009.

Salminen, J., L.J. Pesonen, S. Mertanen, J. Vuollo, and M.-L. Airo, 2009, Palaeomagnetism of the Salla Diabase Dyke, northeastern Finland, and its implication for the Baltica-Laurentia entity during the Mesozoic, in Reddy, S.M., R. Mazunder, D.A.D. Evans, and A.S. Collins, Eds., Palaeoproterozoic Supercontinents and Global Evolution: Geological Society, London, Special Publications, 323, 199–217, doi: 10.1144/SP323.9.

Salminen, J., S. Mertanen, D.A.D. Evans, and Z. Wang, 2014, Paleomagnetic and geochemical studies of the Mesoproterozoic Satakunta dyke swarms, Finland, with implications for a Northern Europe – North America (NENA) connection within Nuna supercontinent: Precambrian Research, 244, 170–191, doi: 10.1016/j.precamres.2013.08.006.

Salminen, J.M., D.A.D. Evans, R.I.F. Trindade, E.P. Oliveira, E.J. Piispa, and A.V. Smirnov, 2016a, Paleogeography of the Congo/São Francisco craton at 1.5 Ga: expanding the core of Nuna supercontinent: Precambrian Research, 286, 195–212, doi: 10.1016/j.precamres.2016.09.011.

Salminen, J.M., R. Klein, S. Mertanen, L.J. Pesonen, S. Fröjdö, I. Mänttäri, and O. Eklund, 2016b, Palaeomagnetism and U-Pb geochronology of ca. 1570 Ma intrusives from Åland archipelago, SW Finland implications for Nuna, in Li, Z.X., D.A.D. Evans, and J.B. Murphy, Eds., Supercontinent Cycles Through Earth History: Geological Society, London, Special Publications, 424, 95–118, doi: 10.1144/SP424.3.

Salminen, J.M, R. Klein, , T. Veikkolainen, , S. Mertanen, , and I. Mänttäri, , 2017, Mesoproterozoic geomagnetic reversal asymmetry in light of new paleomagnetic and geochronological data for the Häme dyke swarm, Finland: Implications for the Nuna supercontinent: Precambrian Research, 288, 1–22, doi: 10.1016/j.precamres.2016.11.003.

Salminen, J., R. Hanson, D.A.D. Evans, Z. Gong, T. Larson, O. Walker, A. Gumsley, U. Söderlund, and R. Ernst, 2018, Direct Mesoproterozoic connection of the Congo and Kalahari cratons in proto-Africa: Strange attractors across supercontinental cycles: Geology, 46, 11, 1011–1014, doi: 10.1130/G45294.1.

Salminen, J., E.P. Oliveira, E.J. Piispa, A.V. Smirnov, and R.I.F. Trindade, 2019, Revisiting the paleomagnetism of the Neoarchean Uauá mafic dyke swarm, Brazil: implications for Archean supercratons: Precambrian Research, 329, 108–123, doi: 10.1016/j.precamres.2018.12.001.

Samal, A.K., R.K. Srivastava, R.E. Ernst, and U. Söderlund, 2019, Neoarchean-Mesoproterozoic Mafic Dyke Swarms of the Indian Shield Mapped Using Google Earth™ Images and ArcGIS™, and Links with Large Igneous Provinces, in Srivastava, R., R. Ernst, and P. Peng, Eds., Dyke Swarms of the World: A Modern Perspective: Springer Geology, Singapore, p. 335–390, doi: 10.1007/978- 981-13-1666-1_9.

Sánchez Bettucci, L., E. Peel, and H. Masquelin, 2010, Neoproterozoic tectonic synthesis of Uruguay: International Geology Review, 52, 1, 51–78, doi: 10.1080/00206810903358095.

Santos, J.O.S., L.A. Hartmann, H.E. Gaudette, D.I. Groves, N.J. McNaughton, and I.R. Fletcher, 2000, A new understanding of the Provinces of Amazon Craton based on integration of field mapping and U-Pb and Sm-Nd geochronology: Gondwana Research, 3, 453–488, doi: 10.1016/S1342-937X(05)70755-3.

Santos, J.O.S, P.E. Potter, N.J. Reis, L.A. Hartmann, I.R. Fletcher, and N.J. McNaughton, 2003, Age, source, and regional stratigraphy of the Roraima Supergroup and Roraima-like outliers in northern South America based on U-Pb geochronology: Geological Society of America Bulletin, 3, 331–348, doi: 10.1130/0016-7606(2003)115<0331:ASARSO>2.0.CO;2.

Santos, J.O.S., C.J. Chernicoff, E.O. Zappettini, and N.J. McNaughton, 2017, Geographic and temporal extensions of the Río de la Plata Craton, South America and its metacratonic eastern margin: International Geology Review, 61, 1, 56–85, doi: 10.1080/00206814.2017.1405747.

Scandolara, J.E., R.T. Correa, R.A. Fuck, V.S. Souza, J.B. Rodrigues, P.S.E. Ribeiro, A.A.S. Frasca, A.M. Saboia, and J.V. Lacerda Filho, 2017, Paleo-Mesoproterozoic arc-accretion along the southwestern margin of the Amazonian craton: The Juruena accretionary orogen and possible implications for Columbia supercontinent: Journal of South American Earth Sciences, 73, 223–247, doi: 10.1016/j.jsames.2016.12.005.

Schobbenhaus, C., D.A. Campos, G.R. Derze, and H.E. Asmus, 1984, Geologia do Brasil: Texto explicativo do Mapa Geológico do Brasil e da área oceânica adjacente incluindo depósitos minerais: DNPM, scale 1:2.500.000, Brasília, DF, Brazil, 501 p.

Schobbenhaus, C., J.H. Gonçalves, J.O.S. Santos, M.B. Abram, R. Leão Neto, G.M.M. Matos, R.M. Vidotti, M.A.B. Ramos, and J.D.A. Jesus, 2004, Carta Geológica do Brasil ao Milionésimo. Sistema de Informações Geográficas. Folhas Boa Vista (NA-20) e Roraima (NB-20): CPRM, scale 1:1,000,000, Brasília, DF, Brazil, CD-ROM.

Silva, F.F., D.C. Oliveira, P.Y.J. Antonio, M.S. D’Agrella-Filho, C.N. Lamarão, 2016, Bimodal magmatism of the Tucumã area, Carajás province: U-Pb geochronology, classification and processes: Journal of South American Earth Sciences, 72, 95–114, doi: 10.1016/j.jsames.2016.07.016.

Silveira, E.M., U. Söderlund, E.P. Oliveira, R.E. Ernst, and A.B. Menezes Leal, 2013, First precise U-Pb baddeleyite ages of 1500 Ma mafic dykes from the São Francisco Craton, Brazil, and tectonic implications: Lithos, 174, 144–156, doi: 10.1016/j.lithos.2012.06.004.

Silver, P.G., and D. Behn, 2008, Intermittent plate tectonics: Science, 319, 85–88, doi: 10.1126/science.1148397.

Smirnov A.V., D.A.D. Evans, R.E. Ernst, U. Söderlund, and A.X. Li, 2013, Trading partners: Tectonic ancestry of southern Africa and Western Australia, in Archean supercratons Vaalbara and Zimgarn: Precambrian Research, 224, 11–22, doi: 10.1016/j.precamres.2012.09.020.

Söderlund, U., W. Bleeker, K. Demirer, R.K. Srivastava, M. Hamilton, M. Nilsson, L.J. Pesonen, A.K. Samal, M. Jayananda, R.E. Ernst, and M. Srinivas, 2019, Emplacement ages of Paleoproterozoic mafic dyke swarms in eastern Dharwar craton, India: Implications for paleoreconstructions and support for a ~30° change in dyke trends from south to north: Precambrian Research, 329, 26–43, doi: 10.1016/j.precamres.2018.12.017.

Srivatava, R.K., U. Söderlund, R.E. Ernst, S.K. Mondal, and A.K. Samal, 2019. Precambrian mafic dyke swarms in the Singhbhum craton (eastern India) and their links with dyke swarms of the eastern Dharwar craton (southern India): Precambrian Research, 329, 5–17, doi: 10.1016/j.precamres.2018.08.001.

Su, X., P. Peng, S. Foley, W. Teixeira, and M.G. Zhai, 2021, Initiation of continental breakup documented in evolution of the magma plumbing system of the ca. 925 Ma Dashigou large igneous province, North China: Lithos, 384, 105984, doi: 10.1016/j.lithos.2021.105984.

Swanson-Hysell, N.L., T.M. Kilian, and R.E. Hanson, 2015, A new grand mean palaeomagnetic pole for the 1.11 Ga Umkondo large igneous province with implications for palaeogeography and the geomagnetic field: Geophysical Journal International, 203, 2237–2247, doi: 10.1093/gji/ggv402.

Tack, L., M.T.D. Wingate, B. De Waele, J. Meert, E. Belousova, B. Griffin, A. Tahon, M. Fernandez-Alonso, 2010, The 1375 Ma “Kibaran event” in Central Africa: prominent emplacement of bimodal magmatism under extensional regime: Precambrian Research, 180, 1-2, 63–84, doi: 10.1016/j.precamres.2010.02.022.

Tait, J., F. Delpomdor, A., Préat, L. Tack, G. Straathof, V.K. Nkula, 2011, Neoproterozoic sequences of the West Congo and Lindi/Ubangi Supergroups in the Congo Craton, Central Africa: Geological Society, London, Memoirs, 36, 1, 185–194, doi: 10.1144/M36.13.

Tassinari, C.C.G., and M.J.B. Macambira, 1999, Geochronological provinces of the Amazonian Craton: Episodes, 22, 174–182, doi: 10.18814/epiiugs/1999/v22i3/004.

Tassinari, C.C.G., and M.J.B. Macambira, 2004, A evolução tectônica do Cráton Amazônico, in Mantesso-Neto V., A. Bartorelli, C. Dal Ré Carneiro, and B.B. Brito-Neves, Eds., Geologia do Continente Sul-Americano: Evolução da obra de Fernando Flávio Marques de Almeida: Ed. Beca. São Paulo, SP, Brazil, p. 471–485.

Teixeira, W., P. Sabaté, J. Barbosa, C.M. Noce, M.A. Carneiro, 2000, Archean and Paleoproterozoic tectonic evolution of the São Francisco craton, Brazil, in CORDANI, U.G., E.J. MILANI, A




DOI: http://dx.doi.org/10.22564/brjg.v40i6.2204

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.





 

>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)

 

Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br

Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.

Creative Commons