A Simple Correction to the Apparent Conductivity from Surface Magnetic Dipole Data

Érico Tenório França, Cícero Régis, Luciano Soares da Cunha, Maria Teresa Françoso


 A method to improve the determination of apparent conductivities from near-surface electromagnetic dipole data should be simple and easy to implement and use in the field. With this objective, we present a simple correction to the apparent resistivity from surface magnetic dipole data. In contrast with the traditional approach that uses a truncated series to approximate the fields, the proposed method calculates the apparent conductivity by solving a minimization problem using the complete homogeneous half-space analytical solutions for the magnetic field of the dipole sources. In comparison with previous approaches to improve apparent conductivity estimation, this is an extremely simple solution, easily implemented and demanding almost negligible computer time and memory. To illustrate the method, applications to synthetic 2D data and real data are presented. The results show that the method can improve the responses of conductive zones which are difficult to perceive in the raw field data.


improved apparent conductivity; conductivity meter; low induction number; Newton's method.

Full Text:



Andrade, F., T. Fischer, and J. Valenta, 2016, Study of errors in conductivity meters using the low induction number approximation and how to overcome them: Presented at the Conference Proceedings, Near Surface Geoscience 2016., European Association of Geoscientists & Engineers, doi: 10.3997/2214- 4609.201602080.

Beamish, D., 2011, Low induction number, ground conductivity meters: A correction procedure in the absence of magnetic effects: Journal of Applied Geophysics, 75, 244–253, doi: 10.1016/j.jappgeo.2011.07.005.

Freimann, B. C., J. G. das Virgens Alves, and M. W. C. Silva, 2014, Estudo hidrogeológico através de perfis geofísicos de poços Salinópolis - PA: Águas Subterrâneas, 28, 14–30.

Guillemoteau, J., F.-X. Simon, E. Lück, and J. Tronicke, 2016, 1d sequential inversion of portable multicon figuration electromagnetic induction data: Near Surface Geophysics, 14, 411–420, doi: 10.3997/1873- 0604.2016029.

Hanssens, D., S. Delefortrie, C. Bobe, T. Hermans, and P. De Smedt, 2019, Improving the reliability of soil ec-mapping: Robust apparent electrical conductivity (reca) estimation in ground-based frequency domain electromagnetics: Geoderma, 337, 1155–1163, doi: 10.1016/j.geoderma.2018.11.030.

He, X., H. Wang, and S. Ma, 2017, Translation algorithm of the apparent conductivity using the frequency- domain electromagnetic method of a magnetic dipole: Journal of Applied Geophysics, 146, 221–227, doi: 10.1016/j.jappgeo.2017.09.015.

Huang, H., and I. J. Won, 2000, Conductivity and susceptibility mapping using broadband electromagnetic sensors: Journal of Environmental and Engineering Geophysics, 5, 31–41, doi: 10.4133/JEEG5.4.31.

Jin, J.-M., 2015, The finite element method in electromagnetics, 3d ed.: Wiley.

Kruk, J., J. Meekes, P. Van Den Berg, and J. Fokkema, 2000, An apparent-resistivity concept for low-frequency electromagnetic sounding techniques: Geophysical Prospecting, 48, 1033- 1052, doi: 10.1046/j.1365- 2478.2000.00229.x.

Li, Y., and K. Key, 2007, 2d marine controlled-source electromagnetic modeling: Part 1 – an adaptive finiteelement algorithm: GEOPHYSICS, 72, WA51–WA62, doi: 10.1190/1.2432262.

McNeill, J. D., 1980, Electromagnetic terrain conductivity measurements at low induction numbers: Technical Note TN-6, Geonics Ltd.

Méndez-Delgado, S., E. Gómez-Treviño, and M. A. Pérez-Flores, 1999, Forward modelling of direct current and low-frequency electromagnetic fields using integral equations: Geophysical Journal International, 137, 336–352, doi: 10.1046/j.1365-246X.1999.00826.x.

Rossetti, D., 2001, Late Cenozoic sedimentary evolution in northeastern Pará, Brazil, within the context of sea level changes: Journal of South American Earth Sciences, 14, 77–89, doi: 10.1016/S0895-9811(01)00008-6.

Spies, B. R., and F. C. Frischknecht, 1987, Electromagnetic sounding, in Electromagnetic Methods in Applied Geophysics, Vol. 2, Application: SEG, Investigations in Geophysics Series, chapter 5, 285–425, doi: 10.1190/1.9781560802686.ch5.

Ward, S. H., and G. W. Hohmann, 1987, Electromagnetic theory for geophysical applications, in Electromagnetic Methods in Applied Geophysics, Vol. 1, Theory: SEG, Investigations in Geophysics Series, chapter 4, 130–311, doi: 10.1190/1.9781560802631.ch4.

DOI: http://dx.doi.org/10.22564/brjg.v41i1.2213

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)


Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br


Creative Commons