3D Refraction Travel Time Accuracy Study in High Contrasted Media
Abstract
Keywords
Full Text:
PDFReferences
Ahmed, S., S. Bak, J. McLaughlin, and D. Renzi, 2011, A third order accurate fast marching method for the eikonal equation in two dimensions: SIAM Journal on Scientific Computing, 33, 2402–2420, doi: https://doi.org/10.1137/10080258X.
Alkhalifah, T., and S. Fomel, 2001, Implementing the fast marching eikonal solver: spherical versus cartesian coordinates: Geophysical Prospecting, 49, 165–178, doi: https://doi.org/10.1046/j.1365-2478.2001.00245.x.
Bak, S., J. McLaughlin, and D. Renzi, 2010, Some improvements for the fast sweeping method: SIAM Journal on Scientific Computing, 32, 2853–2874, doi: https://doi.org/10.1137/090749645.
Balkaya, Ç., Z. Akç??, and G. Göktürkler, 2010, A comparison of two travel-time tomography schemes for crosshole radar data: Eikonal-equation-based inversion versus ray-based inversion: Journal of Environmental & Engineering Geophysics, 15, 203–218, doi: https://doi.org/10.2113/JEEG15.4.203.
Bording, R. P., 2004, Finite difference modeling - nearly optimal sponge boundary conditions: Presented at the 2004 SEG Annual Meeting, SEG Technical Program Expanded Abstracts. Denver, Colorado. doi: https://doi.org/10.1190/1.1845189.
Bulhões, F. C., M. A. C. Santos, L. A. Santos, and V. T. X. de Almeida, 2021, Regularization effects on 2D seismic refraction tomography: case study on shallow marine environment: Presented at the 17th International Congress of the Brazilian Geophysical Society, SBGf. Rio de Janeiro, Brazil.
Cai, W., P. Zhu, and G. Li, 2023, Improved fast iterative method for higher calculation accuracy of traveltimes: Computers & Geosciences, 174, 105331, doi: https://doi.org/10.1016/j.cageo.2023.105331.
Capozzoli, A., C. Curcio, A. Liseno, and S. Savarese, 2013, A comparison of fast marching, fast sweeping and fast iterative methods for the solution of the eikonal equation: 2013 21st Telecommunications Forum Telfor (TELFOR), IEEE, Belgrade, Serbia, 685–688. doi: https://doi.org/10.1109/TELFOR.2013.6716321.
Cerjan, C., D. Kosloff, R. Kosloff, and M. Reshef, 1985, A nonreflecting boundary condition for discrete acoustic and elastic wave equations: Geophysics, 50, 705–708, doi: https://doi.org/10.1190/1.1441945.
Cerveny`, V., 2001, Seismic ray theory: Cambridge University Press, Cambridge, doi: https://doi.org/10.1017/CBO9780511529399.
Costa, F., F. Capuzzo, A. de Souza Jr, R. Moreira, J. Lopez, and M. Cetale, 2020, Understanding refracted wave paths for Brazilian pre-salt target-oriented imaging, in SEG Technical Program Expanded Abstracts 2020. Virtual event: Society of Exploration Geophysicists, 2375–2380. doi: https://doi.org/10.1190/segam2020- 3426868.1.
Da Silva, S., A. Karsou, R. Moreira, J. Lopez, and M. Cetale, 2022, Klein-Gordon equation and variable density effects on acoustic wave propagation in Brazilian pre-salt fields: 83rd EAGE Annual Conference & Exhibition, European Association of Geoscientists & Engineers, Madrid, 1–5. doi: https://doi.org/10.3997/2214- 4609.202210385.
Dang, F., and N. Emad, 2014, Fast iterative method in solving eikonal equations: a multi-level parallel approach: Procedia Computer Science, 29, 1859–1869, doi: https://doi.org/10.1016/j.procs.2014.05.170.
De Matteis, R., A. Romeo, G. Pasquale, G. Iannaccone, and A. Zollo, 2010, 3D tomographic imaging of the southern apennines (Italy): A statistical approach to estimate the model uncertainty and resolution: Studia Geophysica et Geodaetica, 54, 367–387, doi: https://doi.org/10.1007/s11200-010-0022-x.
Detrixhe, M., F. Gibou, and C. Min, 2013, A parallel fast sweeping method for the eikonal equation: Journal of Computational Physics, 237, 46–55, doi: https://doi.org/10.1016/j.jcp.2012.11.042.
Farber, R., 2016, Parallel programming with openacc: Newnes, doi: https://doi.org/10.1016/B978-0-12-410397- 9.00001-9.
Farra, V., 1993, Ray tracing in complex media: Journal of Applied Geophysics, 30, 55–73, doi: https://doi.org/10.1016/0926-9851(93)90018-T.
Herrmann, M., 2003, A domain decomposition parallelization of the fast marching method: Technical Report: Presented at the Defense Technical Information Center.
Hicks, G. J., 2002, Arbitrary source and receiver positioning in finite-difference schemes using Kaiser windowed sinc functions: Geophysics, 67, 156–165, doi: https://doi.org/10.1190/1.1451454.
Hole, J., and B. Zelt, 1995, 3-D finite-difference reflection traveltimes: Geophysical Journal International, 121, 427–434, doi: https://doi.org/10.1111/j.1365-246X.1995.tb05723.x.
Hong, S., and W.-K. Jeong, 2016, A multi-gpu fast iterative method for eikonal equations us- ing on-the-fly adaptive domain decomposition: Procedia Computer Science, 80, 190–200, doi: https://doi.org/10.1016/j.procs.2016.05.309.
Huang, G., and S. Luo, 2020, Hybrid fast sweeping methods for anisotropic eikonal equation in two-dimensional tilted transversely isotropic media: Journal of Scientific Computing, 84, 1–30, doi: https://doi.org/10.1007/s10915-020-01280-3.
Huang, Y., 2021, Improved fast iterative algorithm for eikonal equation for GPU computing (version 3): arXiv, doi: https://doi.org/10.48550/ARXIV.2106.15869.
Jeong, W.-K., and R. T. Whitaker, 2008, A fast iterative method for eikonal equations: SIAM Journal on Scientific Computing, 30, 2512–2534, doi: https://doi.org/10.1137/060670298.
Kearey, P., M. Brooks, and I. Hill, 2002, An introduction to geophysical exploration, 4: John Wiley & Sons. Koketsu, K., 2000, Finite difference traveltime calculation for head waves travelling along an irregular interface:
Geophysical Journal International, 143, 729–734, doi: https://doi.org/10.1046/j.1365-246X.2000.00269.x. Lecomte, J., E. Campbell, and J. Letouzey, 1994, Building the SEG/EAGE overthrust velocity macro model:
EAGE/SEG Summer Workshop-Construction of 3-D Macro Velocity-Depth Models, European Association of Geoscientists & Engineers, cp–96. doi: https://doi.org/10.3997/2214-4609.201407587.
Linde, N., A. Tryggvason, J. E. Peterson, and S. S. Hubbard, 2008, Joint inversion of crosshole radar and seismic traveltimes acquired at the south oyster bacterial transport site: Geophysics, 73, G29–G37, doi: https://doi.org/10.1190/1.2937467.
Lopez, J., F. Neto, M. Cabrera, S. Cooke, S. Grandi, and D. Roehl, 2020, Refraction seismic for pre-salt reservoir characterization and monitoring: Presented at the SEG International Exposition and Annual Meeting. Virtual event, SEG Technical Program Expanded Abstracts. doi: https://doi.org/10.1190/segam2020-3426667.1.
Luo, S., and J. Qian, 2012, Fast sweeping methods for factored anisotropic eikonal equations: multiplicative and additive factors: Journal of Scientific Computing, 52, 360–382, doi: https://doi.org/10.1007/s10915-011-9550-y.
Noble, M., A. Gesret, and N. Belayouni, 2014, Accurate 3-D finite difference computation of trav- eltimes in strongly heterogeneous media: Geophysical Journal International, 199, 1572–1585, doi: https://doi.org/10.1093/gji/ggu358.
Podvin, P., and I. Lecomte, 1991, Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools: Geophysical Journal International, 105, 271–284, doi: https://doi.org/10.1111/j.1365-246X.1991.tb03461.x.
Qin, F., Y. Luo, K. B. Olsen, W. Cai, and G. T. Schuster, 1992, Finite-difference solution of the eikonal equation along expanding wavefronts: Geophysics, 57, 478–487, doi: https://doi.org/10.1190/1.1443263.
Rawlinson, N., and M. Sambridge, 2004, Wave front evolution in strongly heterogeneous layered media using the fast marching method: Geophysical Journal International, 156, 631–647, doi: https://doi.org/10.1111/j.1365- 246X.2004.02153.x.
Rawlinson, N., and M. Sambridge, 2005, The fast marching method: an effective tool for tomographic imag- ing and tracking multiple phases in complex layered media: Exploration Geophysics, 36, 341–350, doi: https://doi.org/10.1071/EG05341.
Robinson, E. A., and D. Clark, 2017, Basic geophysics: Society of Exploration Geophysicists. Geophysical Monograph Series, 22, 376 pp, doi: https://doi.org/10.1190/1.9781560803461.
Sethian, J. A., 1999, Fast marching methods: SIAM review, 41, 199–235, doi: https://doi.org/10.1137/S0036144598347059.
Shen, Y., and J. Zhang, 2020, Refraction wavefield migration: Geophysics, 85, Q27–Q37, doi: https://doi.org/10.1190/geo2020-0141.1.
Sheriff, R. E., and L. P. Geldart, 1995, Exploration seismology: Cambridge University Press, doi: https://doi.org/10.1017/CBO9781139168359.
Tryggvason, A., and B. Bergman, 2006, A traveltime reciprocity discrepancy in the Podvin & Lecomte time3d finite difference algorithm: Geophysical Journal International, 165, 432–435, doi: https://doi.org/10.1111/j.1365- 246X.2006.02925.x.
Van Trier, J., and W. W. Symes, 1991, Upwind finite-difference calculation of traveltimes: Geophysics, 56, 812–821, doi: https://doi.org/10.1190/1.1443099.
Vidale, J., 1988, Finite-difference calculation of travel times: Bulletin of the Seismological Society of America, 78, 2062–2076, doi: 10.1785/BSSA0780062062.
Waheed, U. B., and T. Alkhalifah, 2017, A fast sweeping algorithm for accurate solution of the tilted transversely isotropic eikonal equation using factorization: Geophysics, 82, WB1–WB8, doi: https://doi.org/10.1190/geo2016-0712.1.
Waheed, U. B., C. E. Yarman, and G. Flagg, 2015, An iterative, fast-sweeping-based eikonal solver for 3D tilted anisotropic media: Geophysics, 80, C49–C58, doi: https://doi.org/10.1190/geo2014-0375.1.
White, M. C., H. Fang, N. Nakata, and Y. Ben-Zion, 2020, Pykonal: a python package for solving the eikonal equation in spherical and Cartesian coordinates using the fast marching method: Seismological Research Letters, 91, 2378–2389, doi: https://doi.org/10.1785/0220190318.
Yang, J., and F. Stern, 2017, A highly scalable massively parallel fast marching method for the eikonal equation: Journal of Computational Physics, 332, 333–362, doi: https://doi.org/10.1016/j.jcp.2016.12.012.
Yordkayhun, S., A. Tryggvason, B. Norden, C. Juhlin, and B. Bergman, 2009, 3D seismic traveltime tomography imaging of the shallow subsurface at the CO2SINK project site, Ketzin, Germany: Geophysics, 74, G1–G15, doi: https://doi.org/10.1190/1.3026553.
Zhao, H., 2005, A fast sweeping method for eikonal equations: Mathematics of Computation, 74, 603–627, doi: https://doi.org/10.1090/S0025-5718-04-01678-3.
Zhao, H., 2007, Parallel implementations of the fast sweeping method: Institute of Computational Mathematics and Scientific / Engineering Computing, 25, 4, 421–429, doi: https://www.jstor.org/stable/43693378.
DOI: http://dx.doi.org/10.22564/brjg.v41i1.2295
This work is licensed under a Creative Commons Attribution 4.0 International License.
a partir do v.37n.4 (2019) até o presente
v.15n.1 (1997) até v.37n.3 (2019)
Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br
Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.