Numerical Simulation of 2D Seismic Wave Propagation in Isotropic and Anisotropic Mediums Applied to a Zero-Offset VSP of the Isleño Field, Eastern Venezuela Basin

Richard Perez-Roa, Mario Caicedo, Ginette Lagrave

Abstract


For a full wave inversion it plays an important role to know the medium (isotropic, anisotropic, poroelastic, etc.) that best fits the observed data so the goal of this work, which is part of a larger FWI project, is to study which direct problem allows us to describe better the set of observed data that are available to us. To this end, 2D numerical simulations of seismic wave propagation were carried out using a staggered grid finite difference approach to simulate the acquisition of a zero offset VSP. The synthetic data (d) was compared with the data (dobs) of a zero offset VSP acquired in the Isleño field, Greater Temblador Area in the Monagas State, Venezuela. The physical models studied were wave propagation in isotropic and VTI anisotropic media. The results of the study show three aspects to stake. First, the signal decay for the vertical component for both the real and simulated data is similar. Second, when comparing the vertical component of the real and synthetic data, it is observed that a signal recorded at 996 m the correlation was 0.75 for the isotropic medium and 0.81 for the VTI anisotropic medium for direct waves. Finally, the third, the comparison for the horizontal component recorded at the same depth shows a correlation of 0.40 for the isotropic medium model and 0.34 for the VTI anisotropic medium for direct waves. The results obtained allow us to deduce that in the case of performing a full wave inversion in the land seismic data acquired in the Isleño field, it is recommended that it be of the anisotropic full wave inversion type to obtain better results.



Keywords


Numerical simulation; seismic wave propagation; isotropy; VTI anisotropy

Full Text:

PDF

References


Bretaudeau, F., Leparoux, D., Durand, O. and Abraham, O., 2011, Small-scale modeling of onshore seismic experiment: A tool to validate numerical modeling and seismic imaging methods: Geophysics, 76, T101-T112, DOI: 10.1190/geo2010-0339.1

Burschil, T., Beilecke, T. and Krawczyk, C., 2015, Finite-difference modelling to evaluate seismic P-wave and shear-wave field data: Solid Earth, 6, 33-47, DOI: 10.5194/se-6-33-2015

Caicedo, M. I. and Mora P., 2004, Temas de propagación de ondas: 1st ed.; Universidad Simón Bolívar: Caracas, Venezuela, 237 pp.

Chávez-Garci?a, F.J., Raptakis, D., Makra, K. and Pitilakis, K., 2000, Site effects at Euroseistest—II. Results from 2D numerical modeling and comparison with observations: Soil Dynamics and Earthquake Engineering, 19, 23-39, DOI: 10.1016/S0267-7261(99)00026-3

CVET, 1970, Léxico estratigráfico de Venezuela: 2nd ed.; Boletin de Geología, Publicaciones Especiales: Caracas, Venezuela, 756 pp.

Etgen, J.T., 1988, Finite difference elastic anisotropic wave propagation: Technical report, SEP- 56, Stanford Exploration Project.

Ikelle, L.T. and Amundsen L., 2018, Introduction to Petroleum Seismology, Investigations in Geophysics Series: 2nd ed.; Society of Exploration Geophysicists, Tulsa, USA, 1404 pp.

Kelly, K.R., Ward, R.W., Treitel S. and Alford R.M., 1976, Synthetic seismograms: A finite-difference approach: Geophysics, 41(1), 2–27, doi: 10.1190/1.1440605

Kormann, J., Cobo, P., Biescas, B., Sallarés, V., Papenberg, C., Recuero, M., and Carbonell, R., 2010, Synthetic modelling of acoustical propagation applied to seismic oceanography experiments: Geophysical Research Letters, 37, L00D90, DOI: 10.1029/2009GL041763

Levander, A. R., 1988, Fourth-order finite-difference P-SV seismograms: Geophysics, 53(11), 1425–1436, DOI: 10.1190/1.1442422

Li, Y, 2006, An empirical method for estimation of anisotropic parameters in clastic rocks: The Leading Edge, 25(6), 706-711, DOI: 10.1190/1.2210052

Liu, E. and Martinez A., 2012, Fundamentals of seismic anisotropy: In: Liu, E. and Martinez A., eds, Seismic Fracture Characterization: 1st ed., EAGE: Oxford, England, chapter 2, pages 29–57.

Madariaga, R., 1976, Dynamics of an expanding circular fault: Bulletin of the Seismological Society of America, 66(3), 639–666, DOI: 10.1785/BSSA0660030639

Moczo, P., Kristek, J. and Gális M., 2014. The Finite-Difference Modelling of Earthquake Motions: Waves and Ruptures: 1st ed.; Cambridge University Press: Londres, England, 383 pp.

Pageot, D., Leparoux, D., Le Feuvre, M., Durand, O., Cote, P. and Capdeville, Y., 2017. Improving the seismic small-scale modeling by comparison with numerical methods: Geophysical Journal International. 211(1), 637–649, DOI: 10.1093/gji/ggx309

Solymosi, B., Favretto-Cristini, N., Monteiller, V., Komatitsch, D., Cristini, P., Arntsen, B. and Ursin, B., 2018, How to adapt numerical simulation of wave propagation and ultrasonic laboratory experiments to be comparable? A case study for a complex topographic model: Geophysics, 83, 1-62, DOI: 10.1190/geo2017-0536.1

Tarantola, A., 2005, Inverse Problem Theory and Methods for Model Parameter Estimation: 1st ed.; SIAM: Society for Industrial and Applied Mathematics: Philadephia, USA, 342 pp.

Thomsen, L., 1986, Weak Elastic Anisotropy: Geophysics, 51, 1954-1966, DOI: 10.1190/1.1442051

Virieux, J., 1984, SH-wave propagation in heterogeneous media: velocity-stress finite-difference method: Geophysics, 49(11), 1933–1942, DOI: 10.1190/1.1441605

Virieux, J., 1986, P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method: Geophysics, 51(4),889–901, DOI: 10.1190/1.1442147

Yilmaz, O, 2001, Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data. Investigations in Geophysics: 2nd ed.; Society of Exploration Geophysicists: Tulsa, USA, 2027 pp.




DOI: http://dx.doi.org/10.22564/brjg.v41i1.2296

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.





 

>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)

 

Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br

Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.

Creative Commons